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Approximate Inference 
in Generalized Linear Mixed Models 

N. E. BRESLOW and D. G. CLAYTON* 

Statistical approaches to overdispersion, correlated errors, shrinkage estimation, and smoothing of regression relationships may be 
encompassed within the framework of the generalized linear mixed model (GLMM). Given an unobserved vector of random effects, 
observations are assumed to be conditionally independent with means that depend on the linear predictor through a specified link 
function and conditional variances that are specified by a variance function, known prior weights and a scale factor. The random 
effects are assumed to be normally distributed with mean zero and dispersion matrix depending on unknown variance components. 
For problems involving time series, spatial aggregation and smoothing, the dispersion may be specified in terms of a rank deficient 
inverse covariance matrix. Approximation of the marginal quasi-likelihood using Laplace's method leads eventually to estimating 
equations based on penalized quasilikelihood or PQL for the mean parameters and pseudo-likelihood for the variances. Implementation 
involves repeated calls to normal theory procedures for REML estimation in variance components problems. By means of informal 
mathematical arguments, simulations and a series of worked examples, we conclude that PQL is of practical value for approximate 
inference on parameters and realizations of random effects in the hierarchical model. The applications cover overdispersion in 
binomial proportions of seed germination; longitudinal analysis of attack rates in epilepsy patients; smoothing of birth cohort effects 
in an age-cohort model of breast cancer incidence; evaluation of curvature of birth cohort effects in a case-control study of childhood 
cancer and obstetric radiation; spatial aggregation of lip cancer rates in Scottish counties; and the success of salamander matings in 
a complicated experiment involving crossing of male and female effects. PQL tends to underestimate somewhat the variance components 
and (in absolute value) fixed effects when applied to clustered binary data, but the situation improves rapidly for binomial observations 
having denominators greater than one. 

KEY WORDS: Longitudinal data; Overdispersion; Penalized quasi-likelihood; Spatial aggregation; Variance components. 

The generalized linear model (GLM) (McCullagh and 
Nelder 1989) neatly synthesizes likelihood-based approaches 
to regression analysis for a variety of outcome measures. 
Several recent extensions of this useful theory involve models 
with random terms in the linear predictor. Such generalized 
linear mixed models (GLMM's) are useful for accommo- 
dating the overdispersion often observed among outcomes 
that nominally have binomial (Williams 1982) or Poisson 
(Breslow 1984) distributions; for modeling the dependence 
among outcome variables inherent in longitudinal or re- 
peated measures designs (Stiratelli, Laird, and Ware 1984; 
Zeger, Liang, and Albert 1988) ;and for producing shrinkage 
estimates in multiparameter problems, such as the construc- 
tion of maps of small area disease rates (Clayton and Kaldor 
1987; Manton et al. 1989). 

It is often a reasonable approximation and certainly tra- 
ditional to assume that the random error terms have a mul- 
tivariate normal distribution whose variance components are 
to be estimated from the data. When the outcomes come in 
the form of proportions or counts, a full maximum likelihood 
analysis based on their joint marginal distribution requires 
numerical integration techniques for calculation of the log- 
likelihood, score equations, and information matrix. This 
method has been implemented successfully in relatively 
simple problems involving binomial (Brillinger and Preisler 
1986; Crouch and Spiegelman 1990) and Poisson (Hinde 
1982) mixtures with a high degree of independence among 
the observations. To date it has proved intractable for more 
complicated problems involving irreducibly high-dimen- 
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sional integrals, however. Recent Bayesian procedures avoid 
the need for numerical integration by taking repeated samples 
from the posterior distributions using importance (Ii and 
Raghunathan 199 1) or Gibbs (Besag, York, and MolliC 199 1; 
Zeger and Karim 199 1) sampling techniques. An attractive 
feature of the Bayesian approach is its flexibility for full as- 
sessment of the uncertainty in the estimated random effects 
and functions of model parameters. Potential drawbacks in- 
clude the intensive computations and questions about when 
the sampling process has achieved equilibrium (Ripley and 
Kirkland 1990). There is still room for simple, approximate 
methods both for exploratory analyses and to provide starting 
values for use with other, more exact procedures. 

This article considers two closely related approximate 
methods of inference in GLMM's and investigates their suit- 
ability for practical work by means of Monte Carlo studies 
and illustrative applications. Both have been considered pre- 
viously, although not at the level of generality adopted here. 
The penalized quasi-likelihood (PQL) method exploited by 
Green (1 987) for semiparametric regression analysis is avail- 
able for inference in hierarchical models where the focus is 
on shrinkage estimation of the random effects (Robinson 
199 1). PQL was proposed as an approximate Bayes proce- 
dure for some commonly occurring GLMM's by Laird 
(1978) and by Stiratelli et al. (1984) and it has been used 
more recently by Schall(199 1) and McGilchrist and Aisbett 
( 199 1). Marginal quasi-likelihood (MQL) is the name that 
we give to the procedure proposed by Goldstein (1991) as 
an extension to GLM's of his work on multilevel modeling 
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(Goldstein 1986, 1988). It is appropriate when interest is The integrated quasi-likelihood function used to estimate 
focused more on the marginal relationship between covari- ( a ,  8) is defined by 
ables and outcome (Liang, Zeger, and Qaqish 1992; Zeger e4'(a'o) 

et al. 1988). A key feature of these methods is that they may 
be implemented by repeated use of standard software for 
variance components analysis of normally distributed ob- 
servations, just as GLM's may be fitted by repeated calls to 
weighted least squares procedures. Both provide for shrinkage 
estimates of random error terms and for analogs of restricted 
maximum likelihood (REML) estimates of the variance 
components (Patterson and Thompson 197 1). 

The organization of the article is as follows. After a brief 
statement of the model in Section 1, the PQL criterion is 
motivated in Section 2 by approximating the integrated 
quasi-likelihood. In Section 3 an approximate GLM for the 
marginal distribution of the data is developed and related to 
the generalized estimating equation approach of Zeger et al. 
(1988). An outline of the computational procedure is pre- 
sented in Section 4. A Monte Carlo investigation using bi- 
nomial-normal observations is discussed in Section 5. Illus- 
trative analyses presented in Section 6 indicate a wide range 
of applications. In Section 7, PQL and MQL are related to 
other recent work and some suggestions for further research 
are made. Readers who are less interested in theoretical and 
computational aspects may wish to concentrate their atten- 
tion on Sections 1, 2.3, 3.1, 5, and 6. 

I. THE HIERARCHICAL MODEL 

Observations on the ith of n units consist of a univariate 
response variable yi together with vectors xi and zi of ex- 
planatory variables associated with the fixed and random 
effects. Units may be blocked in some way, for example when 
they involve repeated measures on the same subject. We 
suppose that, given a q-dimensional vector b of random ef- 
fects, the yi are conditionally independent with means 
E(yi ( b) = pP and variances var(yi ( b) = 4aiv(pP), where 
v( .) is a specified variance function, ai is a known constant 
(e.g., the reciprocal of a binomial denominator) and 4 is a 
dispersion parameter that may or may not be known. This 
formulation encompasses situations where the random effects 
are nested within subjects (e.g., Sections 6.1, 6.5) and when 
they are not (Sections 6.2-6.4, 6.6). The conditional mean 
is related to the linear predictor 11; = xfa + zf b by the link 
function g(pP) = ? f ,  with inverse h = g-' ,  where a is a p 
vector of fixed effects. Denoting the observation vector by y 
= (y l ,  . . . ,y,)' and the design matrices with rows xf and 
zfby X and Z ,  the conditional mean satisfies 

The model is completed by the assumption that b has a mul- 
tivariate normal distribution with mean 0 and covariance 
matrix D = D(0) depending on an unknown vector 8 of 
variance components. In all the examples we consider, which 
involve binomial, Poisson, and hypergeometric specifications 
for the conditional distribution of yi ,the dispersion param- 
eter 4 is fixed at unity. In other applications, however, it 
may be estimated together with 0 as a parameter in the co- 
variance matrix of the marginal distribution of y .  

1 " 
a ~ D I - ' ~ ' S-2 di (y i ;$) - - b'D-'b I db,exp[-

24 , = ,  2 

where (2) 

denotes the deviance measure of fit. If, conditionally on b, 
the observations are drawn from a linear exponential family 
with variance function v( .), then the deviance is well known 
to equal to the scaled difference 24{1(y; y, 4 )  - l(y; p, 4 ) ) ,  
where I(y; p, 4 )  denotes the conditional likelihood of y given 
its mean p (see, for example, McCullagh and Nelder 1989). 
In this case ql(a, 8) represents the true log-likelihood of the 
data. As already mentioned, the primary difficulty in imple- 
menting full likelihood inference lies in the integrations 
needed to evaluate ql and its partial derivatives. 

2. PENALIZED QUASI-LIKELIHOOD 

2.1 Motivation of the PQL Criterion 

Writing Equation (2) in the form c(DI-"" s-"'~'db,  
we apply Laplace's method for integral approximation 
(Barndorff-Nielsen and Cox 1989, sec. 3.3; Tierney and Ka- 
dane 1986). Let K' and K" denote the q vector and q X q 
dimensional matrix of first- and second-order partial deriv- 
atives of K with respect to b. Ignoring the multiplicative con- 
stant c, the approximation yields 

where 6 = & ( a ,  8) denotes the solution to 

that minimizes K( b ).Differentiating again with respect to b , 
we have 

rz: Z'WZ + D-I, (4) 

where W is the n X n diagonal matrix with diagonal terms 
wi = { +aiv(pf )[gr( p; ) I  ') -' that are recognizable as the 
GLM iterated weights (Firth 1991, p. 63; McCullagh and 
Nelder 1989, sec. 2.5). The remainder term 

has expectation 0 and is thus, in probability as a function of 
n, of lower order than the two leading terms in Equation 
(4). R equals 0 for the canonical link functions, for which 
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gl(y) = v-'(y) (McCullagh and Nelder 1989, p. 32). Com- 
bining (2)-(4) and ignoring R leads to 

where b is chosen to maximize the sum of the last two terms. 
Assuming that the GLM iterative weights vary slowly (or 

not at all) as a function of the mean, we ignore the first term 
in this expression and choose a to maximize the second. 
Thus (&, b) = (&(8), b(8)), where b(8) = b(&(8)), jointly 
maximize Green's ( 1987) PQL 

Differentiation with respect to a and b leads to the score 
equations for the mean parameters: 

and 

Stiratelli et al. (1984) derived these equations for logistic 
regression of binary data by maximizing the Bayes posterior 
distribution for ( a ,  b) under a diffuse prior for a (cf. Schall 
1991). 

2.2 Fisher Scoring 

Green (1987) developed the Fisher scoring algorithm for 
solution of Equations (7) and (8) as an iterated weighted 
least squares (IWLS) problem involving a working dependent 
variable and a weight matrix that are updated at each iter- 
ation. His development is modified slightly here to exploit 
the close correspondence with the normal theory calculations 
of Harville (1977). Defining the working vector Y to have 
components Yi = ? + (yi - y? )g1(y: ), the solution to (7) 
and (8) via Fisher scoring may be expressed as the iterative 
solution to the system 

X'WX X'WZD ](a) = [X'WY] 

[Z'WX I + Z r W Z D  v Z'WY (9) 

where b = Dv .Harville (1 977) derived (9) for the best linear 
unbiased estimation (BLUE) of a and b in the associated 
normal theory model Y = Xa + Zb + e, where e -- N(0,  
W-I ) and b -- N ( 0 ,  D), e and b independent. Equivalently, 
one may first solve for a in 

(X'V-' x )a  = X'V-'Y, (10) 

where V = W -' + ZDZ', and then set 

b = D; = DZ'V-'(Y - x&).  (1 1) 

This suggests that one take as an approximate covariance 
for & the matrix (x'V-'X)-'. This is exact for the normal 

I I 

theory linear model, provided that 8 is known. Standard er- 
rors for b may be calculated from (1 I).  But both sets of 
standard errors ignore the additional variability stemming 
from the need to estimate 8. Normal theory approximations 
that account for this additional variability have been pro- 
posed (Kackar and Harville 1984), and it would be of interest 
to explore their suitability for the more general models con- 
sidered here. 

2.3 Singular Variance Matrices 

As seen in the examples in Sections 6.3-6.5, which involve 
autoregressive models for smoothing and spatial aggregation, 
it is sometimes useful to specify the random effects model 
in terms of the inverse dispersion matrix R rather than D. 
Reciprocals of the diagonal terms in R equal conditional 
variances given the remaining variables, whereas the off-di- 
agonal terms determine the conditional regression and cor- 
relation relationships (Dempster 1972; Whittaker 1990). In 
stochastic smoothing models of this type, the term b'Rb in 
Equation (6) represents a "roughness penalty" (Good and 
Gaskins 197 1). Typically, however, no penalty is associated 
with the overall average or level of the components of b, nor 
sometimes even with their linear trend. Then R is singular 
and the probability distribution of the random effects is not 
fully specified. 

Suppose that r linearly independent combinations of b, 
the "aliased" components, have no associated probability 
distribution. Typically one constrains these components to 
0, say by Gb = 0 where G is a r X q matrix of rank r, and 
includes them instead in the fixed part of a model. There 
are then two ways to proceed. Either one can reduce the 
problem to that of estimating a reduced set of q - r random 
effects that have a specified, full rank probability distribution 
(e.g., McGilchrist and Aisbett 199 1). Or equivalently, one 
can use for the dispersion matrix D the Moore-Penrose gen- 
eralized inverse, R- (Graybill 1983, sec. 6.2.1). This sets to 
0 the variances for the aliased linear combinations of b, so 
that they are effectively constrained to take on the value 0. 
The latter approach offers the greater flexibility and is the 
one chosen here. 

2.4 Variance Component Estimation 

Substitution of the maximized value of (6) into (5) and 
evaluation of W at (&(8), b(8)) generates an approximate 
profile quasi-likelihood function for inference on 8. We make 
some further approximations to motivate standard estimat- 
ing equations in terms of the working vector Y, the iterated 
weights W,  and the design matrices X and Z .  Ignoring 
throughout the dependence of W on 8 and replacing the 
deviance C di(yi , y? ) by the Pearson chi-squared statistic 
C (yi - y ~ ) 2 / [ u l v ( y ~)], we have up to the usual additive 
constant 

1
ql(&(e), e) - - - i o g p  I 

2 

1 
- - (Y-X&) 'v- ' (Y-X&).  (12)

2 



12 

This quantity, whose derivation used Harville's (1977) 
Equations 5.1 and 5.2, may be recognized as the profile like- 
lihood based on the associated normal theory model for Y. 
To make degrees-of-freedom adjustments that account for 
the fact that & rather than a appears in the quadratic form 
in (1 2), we use in practice the REML version (Patterson and 
Thompson 197 1) : 

1 1 
qll (&(8), 8) = - -

2 
log ( V  I - -

2 
log 1 X'V-'X I 

For the normal theory linear model this adjustment corre- 
sponds to the profile likelihood correction of Cox and Reid 
(1987). Full justification requires (a) that a and 8 be or- 
thogonal parameters and (b) that the information matrix for 
&(8) be X'V-'X. Neither requirement holds exactly for the 
general GLMM developed in this section. Both do hold, 
however, for the marginal model considered in the next sec- 
tion. 

Following Harville (1977), we define P = V-' - V -'X 
X (X'V-'X)-'X'V-' and differentiate (13) with respect to 
the components of 8 to obtain estimating equations for the 
variance parameters: 

dV
(Y - Xa)'V-' -aej V-'(Y - Xa) - tr 

The corresponding Fisher information matrix J has com- 
ponents 

Note that because the dependence of W on 8 is ignored in 
calculating dV/dO,, in (14) and (1 5) qll cannot be used as an 
objective function to help solve the equations. 

2.5 Remarks on Asymptotic Theory 

Our "derivation" of the penalized quasi-likelihood (6) and 
modified profile quasi-likelihood (13) involved several ad 
hoc adjustments and approximations for which no formal 
justification was given. It is best viewed as providing heuristic 
motivation for the estimating Equations (7), (8), and (14) 
that may be studied in their own right. Informal consider- 
ations, however, do suggest circumstances in which the ap- 
proximations should perform well. First, the equations are 
the REML equations under the normal theory linear model, 
for which the working and observation vectors coincide and 
W is the identity matrix. Unless y can be partitioned into K 
independent components where K increases with n, of 
course, even this does not guarantee that the standard 
asymptotic theory applies (Harville 1977, sec. 4.2). Second, 
key portions of the argument involved approximating the 
deviance increments by the normed, squared residuals or 
the penalized deviance by a quadratic function of b. Both 
approximations are likely to improve as the individual yi 
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become more normally distributed. Such "small dispersion 
asymptotics" occur, for example, as the denominators of 
binomial proportions or the means of Poisson observations 
increase (Jorgensen 1987). 

3. MARGINAL QUASI-LIKELIHOOD 

3.1 The Marginal Model 

A key feature of the hierarchical model is that the regres- 
sion structure in Equation (1) is conditional on the values 
of the random effects b. When separate random effects are 
estimated for each person in a medical study, for example, 
this means that a represents covariable effects at the level of 
the individual subject. Because one generally desires esti- 
mates of covariable effects on population averages (e.g., on 
the survival rates of specific subgroups), it is often more ap- 
propriate to specify the GLM in terms of the marginal mean 
as 

Unless the link function is the identity, however, the marginal 
mean so defined does not generally coincide with the mar- 
ginal mean calculated from Equation (1). 

One may, nonetheless, think of (16) as derived from a 
rather crude, first-order approximation to the hierarchical 
model that is valid in the limit as the components of dis- 
persion approach 0. Writing the model in the form yi = pf
+ ci with var(ei ) = 4aiv(pf) and b -- N ( 0 ,D), one has y; 
B h(x: a )  + hr(x: a)z: b + t i (Goldstein 199 1). Defining Vo 
and A to be the diagonal matrices with diagonal elements 
4aiv(pi) and gl(pi ), the corresponding first-order variance 
approximation is 

Marginal models of this form were investigated for lon- 
gitudinal designs by Zeger et al. (1988). They showed that 
the true marginal mean for the hierarchical model with nor- 
mally distributed random effects often could be expressed 
in the form of (16), at least approximately, but with altered 
values for the regression variables or regression coefficients. 
With the log link, for example, one finds E (  yi ) = exp(x;a 
+ zf Dzi/2), and thus that the random effects add an ofset 
to the equation for the marginal mean. (Nonnormal random 
effects lead to other offsets.) With the logit link, the a coef-
ficients are attenuated: 

where ci = I c 2 ~ z i z :  I - ' I 2  = (I + ~ ~ z : ~ z ~ ) - ' ~ ~+ I and c 
= 16f i / (  15a). They considered the approximation (1 7) suf- 
ficiently accurate for use as a "working covariance" matrix 
in their iterative estimation procedure but based their infer- 
ences on an empirical covariance matrix derived from the 
estimating equations. 

3.2 Estimation of Fixed and Random Effects 

For fixed 8, we estimate the regression coefficients a in 
the marginal model using the quasi-likelihood equations ap- 
propriate for dependent outcomes (McCullagh and Nelder 
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1989, sec. 9.3). Denoting the marginal mean vector by p 
= (pl,. . . , Iln)f,  the estimating equations 

take the form 

With q = (q l ,. . . ,qn)'  denoting the vector of linear predictors 
q, = x ; a ,  Fisher scoring leads to IWLS regression of the 
working vector Y = q + A(y - p) on X with weight matrix 

where W is once again the diagonal matrix with the GLM 
iterated weights 

as diagonal elements. At each step in the iteration, the 
problem is formally equivalent to that of estimating a 
in the associated normal theory model Y = Xa + Zb + E ,  

with E -- N ( 0 ,  W-') and b -- N ( 0 ,  D). Shrinkage 
estimates for the random effects are again obtained as b 
= DZ'V-' (Y - X&). 

The essential difference between the MQL estimating 
equations for the marginal model and the PQL equations 
for the hierarchical model is that the latter incorporate the 
random effect terms z: b in the linear predictor. 

3.3 Estimation of Variance Components 

Variance parameters may be estimated using Carroll and 
Ruppert's (1982) method of pseudolikelihood. Assuming that 
E(y)  is known, we consider the normal theory likelihood 
based on the variance approximation (1 7) and take logarith- 
mic derivatives with respect to 8. This leads to precisely the 
same REML equations for the variance parameters as were 
derived previously for PQL. Instead of iterating back and 
forth between (7)-(8) and (14), obtaining new values of b 
at each iteration for use in Y and V, we iterate between (1 9) 
for a and ( 14) for 8, delaying the estimation of b from ( I I) 
until convergence. Goldstein (199 I) and colleagues have im- 
plemented this procedure in the context of multilevel models 
involving nested random effects. Approximate estimation of 
the random effects is still a by-product of this approach, al- 
though their interpretation is not as clear as it is for the 
hierarchical model. 

3.4 Asymptotic Justification 

If (16) in fact correctly specifies the marginal mean of y, 
then the estimating equations (19) are unbiased so that, under 
suitable regularity conditions, their root & is consistent for 
a and asymptotically normally distributed (McCullagh and 
Nelder 1989, sec. 9.3). Provided also that (17) correctly 
specifies the variance, the asymptotic covariance matrix may 
be estimated by cov(&) = (x'V-'X)-'. Because E[dU/d8] 
= 0, furthermore, these asymptotic properties will continue 
to hold even if the parameters in V are replaced by consistent 
estimates. Substituting V-I for P in (14), we see that these 
also are unbiased estimating equations and hence may be 

expected to yield consistent estimates for 8. Using P rather 
than V-I is intended to alleviate the small sample bias that 
arises when & is substituted for a ,  and it does not affect the 
asymptotic argument. 

The most rigorous demonstrations to date of these prop- 
erties are those of Liang and Zeger (1 986) and Prentice (1988) 
for the case of block diagonal V. Their arguments lead to 
an alternative, empirical estimate of cov(&) that requires 
only that the regression model (16) for the marginal means 
be correctly specified. 

4. COMPUTATIONAL ASPECTS 

4.1 Initial Estimates of the Variance Parameters 

The computations associated with the two procedures are 
nearly identical and may be described in broad outline as 
follows. Standard GLM techniques (McCullagh and Nelder 
1989, sec. 2.5) lead to an initial estimate of a under the 
assumption that the n observations are independent ( D  
= 0).  Residuals from this initial fit may be used to compute 
initial values for the parameters in V, namely, 8 and also 4 
if it is to be estimated. The exact procedure will depend on 
the particular problem. Any reasonable method is likely to 
be satisfactory for simple overdispersion models involving 
independent observations and a single variance component. 
We used moment equations (Moore 1986). In more com- 
plicated problems, the method of generalized least squares 
may be tried. Here the upper triangular elements of Y * 
= (Y - X&)(Y - X&)' + X1(X'WX )-'X are regressed on 
the appropriate design matrix for the variance components 
using ordinary least squares. Goldstein (1986, 1988) has 
shown that iterated generalized least squares, whereby the 
covariance matrix of Y * is updated at each cycle and used 
in a weighted analysis, produces REML estimates under 
normal theory. In our experience with sparse discrete data, 
however, the initial estimates obtained with ordinary least 
squares often were not satisfactory. In such cases we set the 
parameters corresponding to covariances to 0 and started 
the variance parameters from small positive values. 

4.2 Alternate Scoring for Means and Variances 

The initial estimate 8' permits evaluation of the covariance 
matrix D that occurs in V. Updated values for (A,b) under 
PQL are calculated from (7) and (8), or for & alone from 
(19) under MQL, with the fitted values from the GLM fit 
being used to initialize the iterative solution of these equa- 
tions by IWLS, as outlined in Section 2.2. Once the equations 
for the mean parameters have been solved, the variance 
scores (14) and expected Hessian (15) are used to take a 
Newton step towards a new value 8 ' ,after which one returns 
to (7)-(8) or (19) to reestimate the mean parameters. The 
Newton step is halved if the resulting D(O1) is not positive 
definite. This simple procedure led to joint solutions of the 
mean and variance equations at an interior point of the pa- 
rameter space in most of the examples considered. In general, 
however, one must anticipate all the problems that attend 
REML variance component estimation under standard nor- 
mal theory. In the simulations we found that an adaptation 
of Marquardt's ( 1963) compromise between Fisher scoring 
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and the method of steepest descent, as described by Harville 
(1977), was useful in the initial stages of the search. 

Evaluation of V-I and of the products of the n X n matrices 
occurring in the gradient and expected Hessian for variances 
is the most cumbersome aspect of the computation. Harville's 
Equation (3.6), corresponding to Green's (5.1) and (5.2), is 
useful for calculating V-' .Special structure in the covariance 
matrices must be exploited, however, if these procedures are 
to be used to estimate large numbers of random effects. 

4.3 	 Scoring for REML Estimation in the Two-Level 
Problem 

Longford (1 987), using formulas of Lamotte (1972), de- 
veloped a "fast scoring algorithm" for maximum likelihood 
(ML) estimation of variance components in normal theory 
models involving nested random effects. We extended the 
development in his Appendix for the two-level problem to 
obtain REML rather than ML estimates. Further extensions 
to accommodate more levels of nesting would be desirable. 
Prosser, Rasbash, and Goldstein (1990) have implemented 
the normal theory procedures for two and three levels using 
iterated generalized least squares. Because the procedures we 
describe involve repeated application of normal theory cal- 
culations to the working vector Y with associated covariance 
matrix V, such algorithms may be employed for approximate 
inference in GLMM's (Goldstein 199 1). The results reported 
in Sections 5 and 6 were obtained using the matrix program- 
ming language GAUSS (Aptech Systems 1988). 

5. A SIMULATION STUDY 

The simulation study followed the design specifications 
of Zeger and Karim (1991) to compare results with theirs 
obtained using a Bayesian approach and the Gibbs sampler. 
Each data set involved K = 100 clusters of size nk = 7. Con- 
ditionally independent binary observations ykl were generated 
within each cluster with conditional response probabilities 
given for k = 1, . . . , 100 by 

logit E(yklI bk) = a 0  + a l t l+ a2xk + a3xktl+ b t  + bitl, 

where xk = 1 for half the sample and 0 for the other half 
and tl = I - 4 for I = 1, . . . , 7. The regression coefficients 
were fixed at a' = (-2.5, 1, -1, -.5) while the random effects 
(b:, bh) were generated as a series of 100 iid normal variables 
with mean 0 and covariance structure 

(Zeger and Karim in fact used .49 rather than .50 for cooin 
D2 and set a3= .5 rather than -.5, but this has negligible 
effect on the comparative results.) Two hundred data sets of 
700 observations each were generated with Dl and 100 each 
were generated with D2. The entire experiment was replicated 
with binomial observations ykl whose denominators were m 
= 1,2 ,4 ,  8. 

Average values of the PQL regression coefficients were, in 
absolute value, less than the true values but approached the 
latter as the denominators of the individual.binomia1 obser- 
vations increased (see Table 1). Positive estimates of coo 
= var(by) were obtained for all data sets sampled with D 
= D l .  This single variance component was seriously under- 
estimated when m = 1 but was only moderately underesti- 
mated when m = 8. With binary data generated under D2, 
PQL frequently converged toward a non-positive definite 
covariance matrix, in which case we set the smaller variance 
and the covariance term, as well as the corresponding ele- 
ments of their dispersion matrix, to 0. We estimated coo(resp. 
a l l )  to be 0 in 40% (resp. 12%) of samples with m = 1, 5% 
(8%) with m = 2, 1% (0%) with m = 4, and 0% (0%) with 
m = 8. Moreover, PQL tended to underestimate both vari- 
ance components. Rather large discrepancies were observed 
between the simulated and estimated standard errors of the 
variance components for small m (see Table 2). The standard 
errors estimated for the regression coefficients, on other hand, 
agreed reasonably well with the simulated standard errors. 

Even though the simulated data were generated under the 
hierarchical model, we also analyzed them under the mar- 
ginal model using MQL to study the accuracy of the ap- 

Table 1. Mean Values of Parameter Estimates in the Simulation Study 

Parameter 

Method m uoo 501  01I f fo  f f l  ff2 013 

D = Dl (200replications) 

True value: 
PQL 

Gibbs samplera 

D = D, ( 100 replications) 

True value: 
PQL 1 

2 
4 
8 

Gibbs samplera 1 

From Zeger and Karim (1991). 
See the text. 
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Table2. Comparison of Simulated and Estimated Standard Errors 	 tained under PQL. With D2, in contrast, MQL tended to 
overestimate aoo and to give a negative value (average of 

Parameter -.15) to sol. Such behavior would be anticipated from the 
Method m goo oo1 017 a. a, a2 a3 discussion in Section 3. According to (18), the "true" linear 

Estb .35 - - .28 .12 .46 .20 
2 Sim .24 - - .22 .08 .31 .13 

st .25 - - .22 .08 .34 .i4 where c: = ckl- Fand Fdenotes the average of the Ckl. This 
.20 -4 	Sim - .O6 .28 equals cG(-2.5 + 1 .Otl) when xk = 0 and czl(- 1.5 + 1.Otl)

ESt .19 - - .18 .06 .28 .10 
8 	Sim .18 - - ,05 ,24 ,07 when xk = 1. Because in both cases the constant and t coef- 

Est .17 - - .17 .05 .25 .07 ficient are of opposite signs, the extra variability translates 

Gibbs samplerC 1 Sim .63 - - ,40 ,16 ,61 .25 into a negative covariance when modeled via the random 
st .60 - - .36 .15 .56 .24 t e r m b ~ + b ~ t l .  

D = DP(100 replications) 	 6. ILLUSTRATIVE EXAMPLES 

PQL 1 Sima .30 .lo .lo .28 .12 .4i .i9 6.1 Overdispersion 

Est .30 .I2 .08 .20 .lo .31 .16 of seeds that germinated on each of 21 plates arranged ac- 
Sim .06 .06 .09 .24 cording to a 2 X 2 factorial layout by seed variety and type 
Est .18 .08 .06 .15 .09 .23 .13 

8 Sim .14 .05 ,04 ,14 .07 .22 .lo of root extract. He noted that the within-group variation 
Est .13 .06 .05 .13 .08 .20 .12 exceeded that predicted by binomial sampling theory, and 

Gibbs samplerc 1 Sim .12 ,14 ,38 ,17 ,54 ,31 he was concerned that his logistic regression analysis oftreat- 
Est .59 .21 .22 .37 .19 .57 .28 ment and interaction effects should account appropriately 

for such overdispersion. One rather natural way of account- Simulated standard error. 
ROO^ mean estimated variance. ing for the extraneous plate-to-plate variability in this situ- 
From Zeger and Karim (1 991). ation is by means of a GLMM that has linear predictor 

logit Pr[y, = 1 / x i ,  b,] = 17f = x f a  + bi,proximation (18) and to evaluate the distortions in the es- 
timated covariance matrix caused by the failure to model i = 1, . . . , 21, where a represents the fixed effects associated 
the mean correctly. For this balanced design the MQL es- with seed and extract and the bi, assumed iid N(0,  a2) ,  
timates of the fixed effects were identical to the standard represent random effects associated with each plate. For the 
logistic regression estimates there were used as starting values agriculturalist interested in the effects of seed variety and 
(McCullagh and Nelder 1989, ex. 14.8 and 14.9). Thus, re- root extract treatment on germination rates, it is more ap- 
gardless of the binomial denominator m ,  & was estimating propriate to model the marginal probabilities of germination 
the same quantity. With m = 8 and Dl ,  the average value (averaged over plates). In contrast, the hierarchical model is 
of & was (-2.19, .87, -.92, -.40)', which may be compared of interest in selecting plates containing subgroups of seeds 
with the approximate value of .862 X (-2.5, 1, -1, -.5) that may have particularly high germination rates. 
= (-2.16, .86, -.86, -.43) based on (18). The estimates of Table 3 presents the regression coefficients in linear logistic 
aoo and their standard errors were quite similar to those ob- models fitted to the 21 binomial proportions of seed ger- 

Table 3. Model Fits to Crowder's Seed Data 

Method of analysis 

LR a PQL MQL ML 

Variable B+SE B+SE B + S E  B+SE 

Main effects model 

Constant -.430+ ,114 -.375k .I82 -.369+ ,180 -.389+ ,166 
Seed (2) -.270k ,155 -.363+ .228 -.357+ ,227 -.347k .215 
Extract (2) 1.065+ ,144 1.01 2 k .224 .998k ,222 1.029+ ,205 
u - .352+ .I18 ,349+ ,117 ,295k .I12 

lnteraction model 

Constant -.558+ .I26 -.542k ,190 -.536+ ,190 -.548k ,167 
Seed (2) .I46+ ,223 .077+ .308 .074+ .308 .097+ ,278 
Extract (2) 1.318+ ,177 1.339+ .270 1.326+ ,269 1.337+ ,237 
Interaction -.778+ ,306 -.825+ ,430 -.816+ ,429 -.811 k .385 

- ,313k ,121 ,313k .I20 ,236+ ,110u 


LR = ordinary logistic regression. 
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mination. The results for ML analysis under the hierarchical 
model were obtained using the program EGRET (SERC 
1989), which evaluates the integrated likelihood (2) and its 
logarithmic derivatives using Gaussian quadrature. This gave 
smaller estimates of the overdispersion variance component 
than did PQL and MQL, and the interaction between seed 
type and root extract appeared slightly more significant as a 
consequence. The parameter estimates using MQL were no- 
ticeably attenuated in comparison with those for PQL, as 
would be anticipated from Sections 3 and 5. From a practical 
viewpoint, however, there is little to choose between the two 
analyses. Figure 1 presents the observed proportions and 
corresponding fitted values from PQL under the main effects 
model. There was substantial shrinkage toward the estimated 
group means when the random effects were incorporated in 
the linear predictor, especially for proportions with small 
denominators. 

Rotnitzky and Jewel1 (1990, sec. 4.4) considered robust 
Wald and score tests for these data based on the empirical 
variance. Their Wald tests using a "working" exchangeable 
correlation structure agreed quite well with those calculated 
from the ML estimates and standard errors shown in Table 
3. The corresponding tests for PQL and MQL were slightly 
conservative in comparison. 

6.2 Longitudinal Data 

Thall and Vail(1990, table 2) presented data from a clin- 
ical trial of 59 epileptics who were randomized to a new drug 
(Trt = 1) or a placebo (Trt = 0) as an adjuvant to the standard 
chemotherapy. Baseline data available at entry into the trial 
included the number of epileptic seizures recorded in the 
preceding 8-week period and age in years. The logarithm of 
7I the number of baseline seizures (Base) and the logarithm 
of age (Age) were treated as covariables in the analysis. A 
multivariate response variable consisted of the counts of sei- 
zures during the 2-weeks before each of four clinic visits 
(Visit, coded Visit] = -3, -1, 1, Visit4 = 3). Preliminary 
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Figure 7. Proportion of Seeds That Germinated. The observed propor- 
tions are plotted as circles (a),followed by their denominators. Fitted 
proportions under the fixed and random effects models are plotted as 
squares ( E l )  and plusses (+). 

Journal of the American Statistical Association, March 1993 

analysis indicated that the counts were substantially lower 
during the fourth visit and a binary variable (V4 = 1 for 
fourth visit, 0 otherwise) was constructed to model such ef- 
fects. 

Thall and Vail's analysis focused on estimating the regres- 
sion coefficients in a log-linear model for the marginal event 
rates and the covariance parameters in various patterned 
covariance matrices. Most of the latter were derived from a 
hierarchical, conditionally Poisson model that included one 
set of independent random effects associated with each sub- 
ject and another set associated with each visit. By carefully 
examining residuals comparing the observed and fitted 
counts of each subject at each visit, they identified as "out- 
liers" a number of patients who either had particularly large 
counts relative to the fitted model or had marked changes 
over time in their counts, or both. 

Our reanalysis of these data using a GLMM was oriented 
primarily toward more systematic identification of patients 
who had extreme levels, or extreme degrees of change over 
time, in their event rates. We assumed that y,k, the seizure 
count for patient j on the kth visit, was (conditionally) Pois- 
son-distributed with mean d k .  The most general model con- 
sidered was 

log /.lfk = xjka + bf + b? visitk/ 10 + byk, 

where xjk denotes the vector of treatment, visit, and covari- 
able main effects and interactions; ( b  f ,bj )  are bivariate nor- 
mal random effects that represent the residual level and rate 
of change in the event rate for the jth subject; and the b$ 
are additional random error terms that represent nonspecific 
overdispersion beyond that introduced by the subject-to- 
subject variation. In view of the discussion in Section 3.1, 
the regression coefficients a for all but the constant term 
may be interpreted also as log (relative) event rates in the 
corresponding marginal model. 

Table 4 presents the results obtained with PQL. Model I 
involved a standard Poisson regression analysis, without ac- 
counting for the intrasubject correlation and overdispersion; 
as a result, the standard errors of the subject level variables 
were seriously in error. There was a marked attenuation in 
the regression coefficients, especially the constant, and a sharp 
increase in the standard errors when random subject effects 
were introduced (Model 11) and a further reduction in the 
fixed effect associated with the fourth visit with the addition 
of unit level random variation (Model 111). (Models I1 and 
I11 correspond to Models 52 and 42 of Thall and Vail; our 
numerical results were similar to those shown in their table 
4 for the closely related Model 22.) 

Model IV was the most interesting. There was substantial 
heterogeneity among subjects, even after accounting for the 
treatment and baseline variables, both in the overall level 
and in the trend in mean seizure counts. We estimated the 
correlation between these two random effects to be effectively 
0. Figure 2 graphs the random effects estimated for the 59 
subjects and identifies by number those with particularly 
extreme levels or changes in attack rates, even after covariable 
adjustment. We identified patient 135 as having marked im- 
provement over time after an initially high seizure rate, and 
identified patients 227, 225, and 112 as having the highest 
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Table 4. PQL Model Fits to Thall and Vail's Epilepsy Data 

Model 

I I1 111 IV 

Variable p iSE B i  SE p i S E  6iSE 

Fixed effects -2.76 + .41 -1.25 k 1.2 -1.27 + 1.2 -1.27 i1.2 
Constant 
Base .95 k .04 .87 k .14 .86 i.13 .87 + .14 
Trt - 1 . 3 4 i  .16 -.91 i.41 -.93 i.40 -.91 i.41 
Base x Trt .56 i.06 .33 i.21 .34 k .21 .33 i.21 
Age
V 4  

.90 + .12 
-.I6 + .05 

.47 + .36 
- . I6  k .05 

.47 i.35 
- . l o  + .09 

.46 i.36 
-

Visit110 	 -

Subject level random effects 
Constant (G) -
Visit11 0 (G) -

-Covariance(u,,) 

Unit level random effects 
-

Constant (G) 

overall count levels relative to expectation based on the co- 
variables. Because we expressed the random effects on the 
same log scale as the fixed effects, moreover, we also identified 
patients with especially low or zero counts (e.g., patient 232) 
that were not so apparent in Thall and Vail's analysis. 

6.3 	 Smoothing of Birth Cohort Effects in an 
Age-Cohort Model 

Breslow and Day (1975, table 2) analyzed breast cancer 
rates in Iceland according to year of birth in K = 1 1 cohorts 
from 1840-1 849 to 1940-1 949 and age in J = 13 groups 
from 20-24 years to 80-84 years. They fitted a log-linear 
model with fixed effects for age and cohort, both treated as 
factors, to the two-way table of rates using Poisson regression 
with the logarithm of the person-years denominators as an 
offset in the regression equation. This yielded an excellent 

I -1.0 -0.6 -0.2 0.2 0.6 1 .O 1.4 

Intercept ( b l )  

Figure 2. Random Intercepts and Slopes for Epilepsy Patients. Individual 
patients are identified according to the ID number in Table 2 of Thall and 
vail(1990). 

- - - . 2 6 i  .16 

.53 i.06 .48 i.06 .52 i.06 

- - .74 i.16 


-.01 k .03 


- .36 k .04 -

fit, with a deviance of49.7 on 54 degrees of freedom. Because 
case ascertainment was limited to the period 19 10- 197 1, no 
data were recorded for the younger age groups in the older 
cohorts nor for the older age groups in the recent cohorts; 
63 of the 11  X 13 = 143 cells in the two-way layout were 
empty. Moreover, the 1840 (1 1 cases) and 1940 (7 cases) 
cohorts were so small that the fixed effects estimated for them 
were particularly unstable. To try to reduce the random error 
in the relative risks estimated for these extreme cohorts, we 
fitted a log-linear model with a single term for the logarithm 
of birth cohort number in place of the cohort factor. This 
increased the deviance by only 10.8, with an increase of 9 
degrees of freedom. Figure 3 plots the two sets of fixed cohort 
effects, with the fifth (1 880) cohort selected as baseline. 

Despite the excellent fit of the linear model, however, there 
was concern that the strong parametric assumption was un- 
warranted. To explore this possibility, we used a nonpara- 
metric smoother based on a GLMM with an autoregressive 
error component. The logarithm of the mean number of 
breast cancer cases in the jth age group and kth birth cohort 
was assumed to satisfy 

where n,k denotes the person-years denominator and ajde-
notes the fixed effect of age. The fixed effect trend 0and the 
random effect vectors u and v modeled three aspects of the 
variation of rates with date of birth. 

The effects vk were assumed to be independent N(O, I), 
modeling unstructured heterogeneity of risk over birth co- 
horts. The model for u,  intended to represent smooth vari- 
ation over time, was specified in the forward direction as a 
Gaussian autoregressive model. We initially considered a 
simple random walk model, as is used commonly in Bayesian 
forecasting (Harrison and Stevens 1976). But to improve 
performance at the endpoints, we decided instead on the 
model in which each point is predicted by linear extrapo- 
lation from its two immediate predecessors rather than from 
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Log birth cohort number 

Figure 3. Relative Rates of Breast Cancer Incidence in Iceland, by Coded 
Year of Birth. The logarithms of fitted rate ratios, using birth cohort number 
5 as standard, are plotted for the fixed-effects model as squares (a),for 
the independent random effects model as plusses (+), and for the au- 
toregressive random effects model as diamonds (6).The straight line 
(-) represents the fitted rate ratios for the fixed-effects model with a 
linear term for the logarithm of the coded birth cohort. 

just the latest one. Thus for k > 2 we assumed 

E(ukI Uj,j < k) = 2~k-I- uk-2 

and 

var(uk)uj,j < k) = 1, (21) 

which treats the second dzferences of the series as indepen- 
dent N(0 ,  1) variates. The inverse dispersion matrix for u is 
given by 

-2 1 0 . . .  

. . . . . . . . . etc. 

Equation (23) gives an alternative specification of the 
model as an undirected conditional regression model. For 2 
< k < K - 1, 

and 
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so that the conditional expectation is obtained by cubic in- 
terpolation from the two points on either side. The first (and 
last) point in the series may be seen to have conditional 
expectations given by linear extrapolation from the adjacent 
two points and conditional variance 1. The second (and pen- 
ultimate) point has conditional expectation intermediate be- 
tween quadratic and linear interpolation, which would cor- 
respond torowsofRof(-1,  2, - l ,O, .  . .)and(-1, 3, -3, 
1, . . .). R has rank K - 2 in this model, reflecting the fact 
that both level and trend are aliased. The former is taken up 
by the period parameters aj.The latter is included as a fixed 
effect, pk, for technical reasons described in Section 2.3. 

Not surprisingly, in view of the goodness of fit of the model 
with a strong linear trend in cohort effects, the estimate for 
ul converged to 0 when both u and v terms were included 
in the model. When the autoregressive component alone 
was included, we estimated Go = .12 f .06 using PQL. With 
independent random effects alone, excluding also pk, we 
found GI= .69 _t .17. Figure 3 shows the cohort effects es- 
timated under these two mixed models as well as those for 
the fixed effects models. The greatest differences between the 
estimated random effects occur at the endpoints, where the 
autoregressive effects are fitted by linear extrapolation but 
the independent effects are pulled in towards the common 
mean. Differences also are evident at interior points, where 
the log-relative risk is pulled towards the local cubic fit by 
the autoregressive model and towards the overall mean by 
the independence model. Both mixed models yield more 
reasonable estimates than does the highly variable fixed effect 
at the upper endpoint. 

6.4 A Mixed Model for the Log Odds Ratio 

Kneale (1 97 1) classified deaths from childhood cancer and 
matched controls in the Oxford region by age at death, year 
of birth, and whether or not the mother reported having 
received pelvic radiation during pregnancy. These data were 
arranged by Breslow (1976) into a series of 2 X 2 tables of 
cases versus controls and x-ray versus no x-ray, one table for 
each of 120 combinations of age 0-9 and birth year 1944- 
1964. Conditioning on the marginal totals in each table, he 
fitted log-odds-ratio regression models using maximum like- 
lihood techniques based on the noncentral hypergeometric 
distribution (Zelen 197 1). Although the relative risk for ra- 
diation was reasonably constant across age groups, there was 
a marked decline with year of birth, which was interpreted 
as an effect of temporal decline in radiation dose. The fixed- 
effects analysis seemed to suggest some curvature, as mea- 
sured by a quadratic term in the regression of the log-relative 
risk on year of birth (Fig. 4). But doubts about the significance 
of such curvature were raised by the excess scatter of the 
individually estimated relative risks (shown as "fixed effects" 
in Fig. 4) about the regression line. This source of variation 
had not been formally considered in the earlier analysis. 

Mixed models for log-odds-ratio regression are easily ac- 
commodated within this article's general framework. Al- 
though the exact conditional means and variances of the 
noncentral hypergeometric required for (quasi)likelihood 
analysis are prohibitively complicated when the marginal 
totals are large, simple approximations suggested by Mc- 



19 Breslow and Clayton: Approximate Inference for GLMM's 

Year of birth 

Figure 4.  Relative Risks of Childhood Cancer in the Oxford Region for 
Children Exposed to In Utero Irradiation Versus the Nonexposed, by Year 
of Birth. The logarithms of fitted relative risks are plotted for the fixed- 
effects model as squares (m) and for the autoregressive random effects 
model as diamonds (0).The curved line (-) represents the fitted 
relative risks in a fixed-effects model with linear and quadratic terms for 
year of birth. 

Cullagh (1984) are accurate enough for most practical pur- 
poses (Breslow and Cologne 1986). Denote the odds ratio 
of the expected values in the ith table by $i and denote the 
two sets of marginal totals by (ni 1, ni2) and (mi 1, mi2), 
where ni + ni = mi + mi = Ni .Rather than parameterize 
the model in terms of the mean pi = E(yi), where yi is the 
observed frequency in the upper left cell, it is more conve- 
nient here to parameterize it directly in terms of the odds 
ratio. Thus we suppose that I); = exp(x:a + zfb) under 
PQL or qi = exp(xf a)  under MQL. Using McCullagh's ap- 
proximation, the mean pi and variance vi jointly satisfy the 
equations 

and 

+ + 
(mil - Pi) (ni2 - Pi) 

Because log rC/ is the canonical parameter for the noncentral 
hypergeometric distribution (McCullagh and Nelder 1989, 
sec. 7.3.2), the link derivative gl(p) equals the inverse vari- 
ance v-'(p), so that the denominator terms drop out of the 
PQL score equations (7) and (8). The link derivative so de- 
fined is needed, however, to calculate the GLM iterative 
weights that enter into the PQL and MQL estimation pro- 
cedures. 

Table 5 shows the results of several PQL model fits to the 
Oxford childhood cancer data using the previously described 
approximation. The general form of the fitted models was 

log $,k = a + PIYeark+ P2(Year2- 22) + apk, 

where lCjk represents the log-relative risk of radiation in the 
2 X 2 table formed for the jth age group and the kth year 
of birth. Yeark is coded -10 for 1944, -9 for 1945,. . . , 10 
for 1964, and pk is an iid N(0,  1) error term representing 
extraneous year-to-year variation. For a = 0 the results were 
identical to those reported by Breslow and Cologne (1986, 
table 3) for the McCullagh approximation. Note the marked 
decrease in the estimated variance component as the linear 
birth cohort effect is added to the fixed part of the model. 
There is no clear evidence for extraneous variation of the 
log-relative risk about the regression line. Even if such vari- 
ation is accounted for in the model, however, the coefficient 
of the quadratic term remains statistically significant. 

We also fitted an autoregressive model, without the qua- 
dratic term, to estimate "nonparametrically" the evolution 
of risk with time. Using the specifications of Section 6.3 for 
pk, this model clearly showed the flattening of risk as radia- 
tion dosage was controlled during the mid-l 950s (Fig. 4). 
The fixed-effects quadratic fit was less satisfactory, because 
it suggested a sharper increase in risk in the early 1960s, 
which seemed more a consequence of the parametric for- 
mulation than of any clear feature of the data. 

6.5 	 Spatial Aggregation in Scottish Lip Cancer 
Rates 

Clayton and Kaldor (1987) analyzed observed and ex- 
pected numbers of lip cancer cases in the 56 counties of 
Scotland with a view toward producing a map that would 
display regional variations in cancer incidence yet avoid the 
presentation of unstable rates for the smaller counties. The 
expected numbers had been calculated accounting for the 
different age distributions in the counties using a fixed-effects 
multiplicative model but were regarded for purposes of anal- 
ysis as constants based on an external set of standard rates. 
Thus, conditional on a set of values bi representing county- 
specific log-relative risks (i.e., standardized morbidity ratios, 
;r SMR's), the observed numbers of cases yi, i = 1, . . . ,56 
were assumed to have independent Poisson distributions with 
means pf = niexp(a + bi). Here the ni denote the expected 
numbers and a,  the grand mean, plays the role of the loga- 
rithm of the overall SMR, which one would expect to be 
near unity in view of the way the expected numbers were 
derived. 

Clayton and Kaldor (1987) proposed empirical Bayes es- 
timation of the county-specific SMR's using several alter- 
native assumptions about the distribution of the random 
effects. Specification of these as a random sample from a 

Table 5. PQL Model Fits to the Oxford Childhood Cancer Data 

Regression coefficients * standard error 

Constant YEAR YEAR^ - 22 u 

-,505 * .056 - -
,531 * .076 - - .23 + .07 
.516 * .056 -.0385 + ,0144 - -
,536 +_ ,070 -.0406 +_ .0162 - .16 + .09 
,565 * ,061 -.0445 + .0149 ,0067 + ,0030 -
.566 * ,070 -.0469 * ,0167 .0071 + ,0033 .15 * .10 
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log-gamma distribution led to an exact analysis based on the 
resulting independent negative binomial distributions for the 
yi .To account for spatial aggregation, they also considered 
a model with normally distributed random effects. Approx- 
imation of the conditionally Poisson log-likelihood by a 
quadratic expansion centered at the empirical log SMR, 6i 
= log[(d, + ;)/nil ,  led to a solution based on the EM al- 
gorithm (Dempster, Laird, and Rubin 1977). There was, 
however, an inconsistency in their specification of the spatial 
process (Clayton and Bernadelli 199 1). 

Presumably the spatial aggregation is due in large part to 
the effects of environmental risk factors. Data were available 
on the percentage of the work force in each county employed 
in agriculture, fishing, or forestry. The authors who compiled 
the data (Kemp, Boyle, Smans, and Muir 1985) noted that 
this covariable, xi ,  exhibited spatial aggregation paralleling 
that for lip cancer itself. Because all three occupations involve 
outdoor work, the authors suggested that exposure to sun- 
light, the principal known risk factor for lip cancer, might 
be the explanation. We analyzed the augmented data (Table 

Table 6. Observed and Fitted SMR's for Lip Cancer in 56 Scottish Counties 

Fitted SMR's 
Obs 

Co Obs EXP Cov SMR I 11 111 Adjacent Counties 

NOTE: I, Clayton and Kaldor; II, POL, independence; and Ill, PQL, spatial correlation 
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6) using a conditionally independent Poisson model with the 
conditional means for county i specified by 

log p! = log ni + a. + a lx i /10  + bi. 

Two separate assumptions were made regarding the dis- 
tribution of the random effects bi: (a) iid N(0, c2)  and (b) 
Gaussian intrinsic autoregression. The latter specified 
the inverse variance matrix R according to Besag et al. 
(1991) and gave b an improper density proportional to 
e ~ p { - C ~ - ~ ( b ~- bJ)2/(2u2)),wherei-- jdenotesadjacent 
counties. Here the conditional expectation of bi given b,, j 
# i equals the mean of the bj in contiguous counties, whereas 
the conditional variance equals u 2divided by their number. 

Table 7 presents regression coefficients estimated by PQL 
for models with and without the covariable x, and with both 
independence and autoregressive structures for the random 
effects. Note the slight attenuation in the coefficient of the 
covariable when independent random effects are incorpo- 
rated and the much more marked attenuation under the 
spatial structure. Similarly, there is a reduction in the vari- 
ance components when the covariable is included. This con- 
firms that much of the spatial aggregation is explained by 
the percentage of the work force engaged in outdoor occu- 
pations. Caution should be exercised in interpreting this re- 
sult, however, because the model assumed that the random 
effects were unrelated to the covariables. If the other factors 
that contributed to the spatial correlation were positively 
correlated with the work force covariable, which seems likely, 
then the regression coefficient estimated for this variable 
would be attenuated, with some of the work force effect being 
attributed instead to location. 

Table 6 presents the SMRs estimated for each county un- 
der Clayton and Kaldor's (1987) approximation to the nor- 
mal theory independence model (Model I), under PQL with 
independent random effects (Model 11), and under PQL with 
spatial autocorrelation (Model 111). Because Clayton and 
Kaldor had not considered the covariable, it was omitted 
from the PQL fits to achieve comparability. All models re- 
alized the fundamental goal of pulling in the extreme SMRs 
based on small numbers of observed cases. Estimated SMRs 
for Models I1 and 111, however, were markedly different for 
those counties for which the mean SMR of the neighbors 
differed notably from the overall mean. For example, the 
SMR for county 19 (note that the counties are ordered ac- 
cording to the observed SMR) was pulled down from 162.7 
to 153.6 by the independence model, but upwards to 204.2 
by the spatial model. Its SMR was higher than average, but 
those of the neighboring counties were higher still. For coun- 

Table 7. PQL Model Fits to the Scottish Lip Cancer Data 

Regression coefficients +_ standard error 

Constant x / 1 0  u(spatial) u(independence) 

2 1 

ties with 20 or more cases, the PQL estimates under inde- 
pendence (Model 11) agreed closely with those of Clayton 
and Kaldor (Model I). For smaller counties, the PQL esti- 
mates were generally lower. The difference can be attributed 
largely to their use of the .5 correction in the empirical 
log SMR used to center the approximation, which acts to 
increase this quantity above the level actually observed. 

6.6 	 Crossed Random Effects: The Salamander 
Data 

McCullagh and Nelder (1989, sec. 14.5) published an in- 
teresting set of data on the success of matings between male 
and female salamanders drawn from two populations, the 
roughbutts (RB) and the whitesides (WS), that had been geo- 
graphically isolated from each other. In the first of three ex- 
periments, conducted during the summer of 1986, 10 RB 
females and 10 WS females were mated with three RB males 
and three WS males, for a total of six matings each over 24 
days. Each of 10 RB males and 10 WS males likewise served 
as mates for three females of each type. These same 40 sal- 
amanders were used in a repeat experiment conducted in 
the fall that involved no repetitions of the earlier male-female 
pairs. A third experiment, also conducted in the fall, used a 
new set of 40 animals. Each experiment involved 30 matings 
of each of the four gender-population combinations. Simple 
inspection of the data revealed that three of the crosses had 
success rates of about 7070, whereas the mating of WS females 
with RB males was successful only 25% of the time. Evalu- 
ating the statistical significance of these differences was com- 
plicated by the fact that the 360 binary responses were not 
independent. 

McCullagh and Nelder considered a linear logistic model 
for the marginal probabilities of success, using a linearization 
as in Section 3.1 to derive an approximate covariance matrix 
for the vector of 360 binary outcomes. Because of the bal- 
anced design, their quasi-likelihood estimates of the regres- 
sion parameters were identical to those obtained from stan- 
dard logistic regression under independence (McCullagh and 
Nelder 1989, ex. 14.8 and 14.9). They used a method of 
moments procedure based on the observed covariance matrix 
of the residuals (observed binary minus fitted values) to es- 
timate the variance components. 

Karim and Zeger (1992) reanalyzed these data under a 
hierarchical model, using the Gibbs sampler with a nonin- 
formative prior on the dispersion matrix to approximate the 
posterior distributions of the parameters and random effects 
of interest. Denoting by yf i  the response for female i and 
male j in experiment k, their model B may be written 

where bf and bj" each have two components representing 
the random effects associated with the indicated animal in 
summer and fall. The fixed effects consisted of a constant, 
an indicator WSF of whiteside females, an indicator WSM of 
whiteside males, their interaction, and an indicator of fall 
season. They also considered Model A, in which the gender 
specific random effects from each experiment were assumed 
independent with equal variances, and Model C, in which 
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separate fixed and random effects were estimated for each 
experiment. Models A and C were also considered by 
McCullagh and Nelder. Neither contained the fixed effect 
for fall season. 

We fitted these same models with PQL. For Model B the 
variance matrix of Equation (20) took the form 

V = W - '  + z f D f ( z f ) '+ ZmDm(Zm)t ,  

where zfand Z m  identified the female and male animals 
involved in each mating. The covariance matrix D~of female 
random effects was 

, 

where I is the identity matrix of dimension 20, a l l  is the 
variance of the summer effects, az2is the variance of the fall 
effects, and a12is the covariance. Dm had a parallel structure. 
Using Harville's (1977) Equation (3.6) and standard formulas 
for the inversion of partitioned matrices, we calculated V-I 
by inversion of matrices no larger than 60 X 60. But the 
need to consider 360 X 360 matrices in the variance equa- 
tions (14) and (15) meant that this problem was about as 
large as could be handled reasonably by a microcomputer. 

Table 8 presents variance components found with the three 
procedures. Those estimated by PQL and by McCullagh and 
Nelder's moments method were in reasonable agreement, 
with the exception of the summer male variance. Variances 
estimated by the Gibbs sampler were substantially larger, in 
accordance with our simulation results. The covariance ma- 
trix for males under Model B converged towards singularity 
with PQL; we thus constrained the summer and fall effects 
for individual males to be equal, reducing the number of 
estimated variance parameters from six to four. A high cor- 
relation between the summer and fall male effects was also 
evident with the Gibbs sampler. Absolute values of the 
regression coefficients for Models A and B (Table 9) were 

Table 8. Variance Components for the Salamander Data 

Method of estimation 

Gibbs 
Moments8 sampler PQL 

Season d a, d a, d a, 
Model A: Pooled over independent experiments 

Total .91 .88 1.50 1.36 .72 .63 

Model B: Correlated random effects 

Summer - - 1.92 1.25 1.09 .9Oc 
Fall - - 1.37 2.02 .62 .9Oc 
Covariance - - -.25 1.52 -.I2 .9Oc 

Model C: Separate effects each experiment 

Summer '86 1.37 .70 2.35 .14 1.41 .09 
Fall '86 rerun .98 .60 2.99 1.42 1.26 .62 
Fall '86 .40 1.34 .33 2.89 .26 1.50 

McCullagh and Nelder (1989), table 14.10. 
Karim and Zeger (1 992), table 3, medians. 
'constrained to be equal. 
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Table 9. Regression Coefficients for the Salamander Data 

Model A Model B 

Gibbs Gibbs 
sampler * PQL sampler* PQL 

parameter b k S E ( ~ )  + S E ( ~ )  6 + SE(b) 6B S E ( ~ )  

Constant 1.03 k .43 .79 k .32 1.48 k .64 1.18 k .49 
Fall season - - -.62 + .54 -.50 k .41 
ws, -3.01 + .60 -2.29 + .43 -3.13 + .62 -2.43 + .44 
W ~ M  - .69k.50 -.54+.39 -.76+.62 - .62k.46 
WSFXSWM 3.74k.68 2.82k.50 3.90k.72 3.01k.52 

'Zeger and Karim (1991), table 3. SE computed as range of 90% CI t 3.3. 

25-30% larger under the Gibbs sampler than under PQL, 
which also accords with our simulations (see Sec. 5). The 
key interaction effect was highly significant regardless of the 
method of analysis. MQL actually would have been more 
appropriate in this example, because one is primarily con- 
cerned with estimating the marginal success rates associated 
with different types of matings, not in identifying individual 
salamanders with particularly high success rates. 

7. DISCUSSION AND CONCLUSIONS 

The limited simulation results and illustrative analyses 
presented in this article suggest that reasonably simple ap- 
proximate methods are available for inference on random 
effects in the context of GLM's. These methods may be im- 
plemented by repeated application of normal theory mixed 
model procedures, and they are subject to the same com- 
putational limitations as regards sample size and variance 
structure. When the random effects are nested, even at three 
or more levels, algorithms developed by Goldstein (1986, 
1988) and Longford (1987) suffice to treat large complex 
problems. The procedures discussed herein are still rather 
limited in their ability to handle crossed designs, however. 
The salamander problem, involving two sets of 60 random 
effects each, probably represents an approximate break even 
point, after which the Bayesian treatment based on Gibbs 
sampling becomes progressively easier to implement in 
comparison with PQL or MQL, due to their requirement 
for manipulation of large matrices. Of course, such com- 
parisons are highly dependent on the available computing 
resources. 

Our simulation results were encouraging as regards the 
ability of PQL to render approximately correct inferences 
on regression coefficients in hierarchical models. As antici- 
pated by the development of Section 2, accuracy improved 
as the binomial denominators increased. Nonetheless, even 
with binary data the results were sufficiently accurate for 
many practical purposes. Inference on variance parameters 
was less satisfactory under PQL, due largely to the tendency 
of the procedure to converge to a nonpositive definite vari- 
ance matrix when the binomial denominator was 1 or 2. 
When the response probabilities are small and the data are 
highly discrete, only limited information is present for esti- 
mating random effects and their associated variances and 
covariances. The Bayesian formulation enjoys an advantage 
here because of the information on variance components 
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contributed by the prior distribution. It makes full use of the 
normal theory distributional assumptions, however, whereas 
PQL requires specification only of the first and second mo- 
ments. 

Another limitation of PQL, in common with empirical 
Bayes methods more generally, is the failure to account for 
the contribution of the estimated variance components when 
assessing the uncertainty in both random and fixed effects. 
One major distinction between PQL and MQL is the fact 
that the regression coefficients of the former, but not of the 
latter, depend strongly on the estimated variance components 
when the link function is not the identity, even in large sam- 
ples. Development of an approximate covariance estimate 
for ( 2 ,8) and refinements in the expressions given for the 
variance estimates of & and 8 individually remain important 
problems for further research. (In the meantime, some en- 
couragement can perhaps be taken from the results for 
regression coefficients in Table 2.) Bootstrap methods (Laird 
and Louis 1987) are used increasingly as a means of con- 
structing confidence intervals for the estimated random ef- 
fects, but these are controversial as regards their ability to 
fully reflect the relevant uncertainties. Such problems are 
handled more easily within the Bayesian context by exam- 
ining posterior distributions. 

Our simulation results for MQL, summarized briefly in 
the text, confirm the anticipated attenuation in the estimated 
regression coefficients when the binary data are generated 
under the hierarchical model yet analyzed under the marginal 
one. A notable feature is the spurious correlation induced 
in the estimated random effects by the failure to correctly 
model the heterogeneity in the fixed effects; see Equation 
(1 8). Much of the bias in the estimation of both mean and 
variance parameters might well be alleviated for the logistic 
model by treating the terms ci of (18) as a multiplicative 
oflset whose values depended on the current 8. We plan fur- 
ther research to investigate this question. Results of another 
simulation study of Liang and Zeger's (1986) generalized 
estimating equation (GEE) approach to clustered binary data 
(Sharples and Breslow 1992), for which the marginal means 
of the simulated data actually satisfied the assumed linear 
logistic equation, suggested that the regression parameters 
and their standard errors were well estimated, but the cor- 
relation parameters less so. Because the estimating equations 
for MQL and GEE are identical as regards the mean param- 
eters, one might anticipate similar results for MQL. MQL 
(or GEE) is the method of choice when interest is focused 
on the marginal relationship between covariables and re- 
sponse, and the random effects model serves mainly to sug- 
gest a plausible covariance structure, as expressed in V, that 
enables one to get reasonably efficient estimating equations 
for the mean value parameters. By contrast, PQL is the 
method of choice for estimating parameters in the hierar- 
chical model, especially when attention is focused on the 
random effects. 

Our work is closely related to that of several other research 
teams. The equivalence of MQL and Goldstein's (1 99 1) pro- 
cedure for GLMM's with nested random effects has been 
mentioned already. Earlier work on this topic was reported 
by Morton (1 987, 1988). When applied to normally distrib- 
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uted data with nonlinear link functions, PQL is equivalent 
to the nonlinear mixed model procedure of Lindstrom and 
Bates (1 990). Note in particular the correspondence between 
their Equation (3.3) and our Equation (6) and between their 
(4.3)and our (1 2). Their development extends ours to general 
nonlinear structures for the mean, whereas ours extends 
theirs to nonnormal observations having defined mean- 
variance relationships. A synthesis is clearly possible. Since 
this article was first submitted for publication, papers by 
Schall(1991) and McGilchrist and Aisbett (1991) have ap- 
peared, both of which discussed PQL for GLMM's that in- 
volve sums of independent random effects. Schall (1991) 
obtained estimates of regression coefficients and variance 
components for Model C of the salamander data that were 
identical to ours; he did not consider the correlated random 
effects Model B. 

Liang and Waclawiw (1990) and Waclawiw and Liang 
(1 99 1) proposed an interesting estimating equation approach 
to the random effects in GLMM's, in which the fixed effects 
were estimated from the approximating marginal model as 
in MQL and were then corrected for attenuation using 
Equation (1 8). Optimal estimating equations in the sense of 
Godambe (1960) were suggested for the random effects. 
When applied to the simple overdispersion problem involv- 
ing a log-linear, conditionally Poisson model, their smoothed 
estimate incorporating the random effect is a weighted av- 
erage of the actual observation and the fitted mean. With 
PQL and MQL, in contrast, such averaging is canied out 
with the working vector Y on the scale of the linear predictor. 
This approach seems more natural. Detailed comparisons 
of the properties of the random effects predicted by these 
two approaches would be a worthy subject for further re- 
search. 

Other proposals have been made to introduce autoregres- 
sive variance structures into GLMM's. Zeger (1988) consid- 
ered a time series model for the random effects in a simple 
overdispersion model for count data. The conditionally log- 
linear mean structure was preserved in the marginal model. 
He approximated the marginal variance matrix by a band 
diagonal matrix having correlation structure appropriate for 
the assumed autoregressive model, which was not precisely 
preserved. This enabled him to avoid the large-scale matrix 
inversion required by our approach to autoregressive struc- 
tures. Development of similar approximations for other 
GLMM's is a high priority. Goldstein, Healy, and Rasbash 
(1991) also considered an autoregressive structure for the 
unit level random effects in the context of multilevel mixed 
models for continuous responses and estimated the nonlinear 
correlation parameters by the method of constructed vari- 
ables. There are close connections here with the Bayesian 
approach to dynamic generalized linear models (West, Har- 
rison, and Migon 1985). 

The preceding citations give some indication of the current 
high level of interest in GLMM's. Our goal has been to pro- 
vide a unified framework in which much of this work may 
be discussed and compared and to demonstrate by means 
of simulations and worked examples its potential for appli- 
cations. 

[Received March 1991. Revised April 1992. ] 
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