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EXAMPLES

Overdispersion

This example concerns data on the proportion of seeds that germinated on each of m = 21 plates arranged

in a 2×2 factorial design with respect to seed variety and type of root extract. These data were presented by

Crowder (1978). The sampling model is Yi|β, pi ∼ Binomial(ni, pi) where, for plate i, Yi is the number

of germinating seeds and ni is the total number of seeds (which range between 4 and 81), i = 1, ...,m. To

account for between plate variability, Breslow and Clayton (1993) introduce plate-level random effects,
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and then fit main effects and interaction models:

logit pi = β0 + β1x1i + β2x2i + bi (0.1)

logit pi = β0 + β1x1i + β2x2i + β3x1ix2i + bi (0.2)

with bi|σ2 ∼iid N(0, σ2), and x1i, x2i representing the seed variety and type of root extract for plate i. We

fit each of these models and, following the procedure outlined in Section 4.2, assume a marginal Cauchy

distribution for the random effects with the residual odds of germination across plates being [0.1,10] with

probability 0.95, to give prior σ−2 ∼ Ga(0.5, 0.0164).

Breslow and Clayton (1993) evaluated the likelihood for β, σ using Gaussian quadrature, and Table

1 reports the maximum likelihood estimates (MLEs), along with asymptotic standard errors. These are

compared with the posterior means and posterior standard deviations from INLA (we present standard

deviations on the linear predictor scale for direct comparison with likelihood methods, in practice interval

estimates and inference on a more interpretable scale are preferable). There is reasonably close corre-

spondence between the ML and INLA results, though the posterior standard deviations of the fixed effects

are on all occasions slightly larger than the asymptotic standard errors, which probably reflects that with

m = 21 clusters a little accuracy is lost when using asymptotic inference.

Variable ML INLA ML INLA
Intercept −0.389± 0.166 −0.389± 0.173 −0.548± 0.167 −0.549± 0.182
Seed −0.347± 0.215 −0.351± 0.221 −0.097± 0.278 0.087± 0.298
Extract 1.029± 0.205 1.033± 0.212 1.337± 0.237 1.347± 0.259
Interaction — — −0.811± 0.385 −0.821± 0.414
σ 0.295± 0.112 0.315± 0.125 0.236± 0.110 0.278± 0.117

Table 1. ML and INLA summaries for the seeds data.
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A Mixed Model for the Log Odds Ratio

We analyze data from Kneale (1971), following Breslow and Clayton (1993). The data concern the clas-

sification of childhood cancer deaths by age at death, year of birth and whether or not the mother reported

being exposed to pelvic radiation during pregnancy. These data are combined with a set of matched con-

trols. Following previous authors we arrange the data as a set of m = 120 2 × 2 tables, one for each

combination of age and birth year combination. We let Yi0 represent the number of exposed of the ni0

control individuals in stratum i, and Yi1 the equivalent number of exposed amongst the ni1 cases. We fit

the model presented by Spiegelhalter et al. (1998) in which Yik|pik ∼ind Binomial(nik, pik), k = 0, 1,

with

logit pi0 = µi

logit pi1 = µi + θi

so that µi represent stratum effects, which are modeled as independent normals with large variances, and

exp(θi) is the odds ratio of interest. The log odds ratio is modeled as

θi = β0 + β1yeari + β2(year2i − 22) + bi

with bi|σ2 ∼iid N(0, σ2). We assume the residual odds lie in the range [0.1,10] with probability 0.9, and

a log Cauchy marginal, to give a Ga(0.5,0.0164) prior for σ−2.

The INLA results, alongside those using PQL, are presented in Table 2. For β0 we once again see a

slightly larger standard error under the Bayesian analysis.
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Variable PQL INLA
β0 0.566± 0.070 0.569± 0.075
β1 −0.047± 0.017 −0.047± 0.017
β2 0.007± 0.003 0.007± 0.003
σ 0.150± 0.100 0.170± 0.066

Table 2. PQL and INLA summaries for the Oxford childhood cancer data.

Spatial Aggregation in Scottish Lip Cancer Rates

The Scottish lip cancer data have been analyzed by a number of authors, and concern the incidence of

male lip cancer in 56 counties of Scotland. The available data are the number of cases, Yi, the expected

number of cases, ni, and the proportion of individuals who are employed in agriculture, fishing or forestry,

xi. We assume Yi|µi ∼ind Poisson(µi) and fit four different models:

log µi = log ni + β0 + vi (0.3)

log µi = log ni + β0 + β1xi/10 + vi (0.4)

log µi = log ni + β0 + vi + ui (0.5)

log µi = log ni + β0 + β1xi/10 + vi + ui (0.6)

The unstructured random effects, vi, are such that vi ∼iid N(0, σ2
v), and ui are assigned an intrinsic

conditional autoregressive (ICAR) model. Specifically, E[ui|{uj : j ∈ ∂i}] = ui and Var(ui|{uj :

j ∈ ∂i}, σ2
u) = σ2

u/mi, where ∂i represents the collection of neighbors of area i, ui is the mean of the

neighbors, and mi is the number of neighbors. The prior for β0 is improper uniform. For the unstructured

variability we assume that the residual relative risks lie in the interval [0.2, 5] with probability 0.95 and

assume d = 2 to to give the exponential prior distribution Ga(1,0.140) for σ−2
v . We assume a zero mean

normal prior with variance 1000 for β1, and note that the above model does not aggregate correctly from

a plausible individual-level model, see Wakefield (2007) for further discussion. We consider this model
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for compatibility with the majority of previous analyses.

A prior for σ2
u is more difficult to specify, being a conditional variance. Using the formula given in

Section 4.2 we evaluate the marginal variances with σ2
u = 1, which vary by area; these are plotted in

Figure 1. The mean of these variances is 0.59 so that the average marginal variance is smaller than the

conditional value (of 1). In this example, without other information being available, we would like the

priors for the unstructured and spatial random effects to be roughly equivalent, in the sense of producing

similar distributions for random effects in a generic area, v and u. Since the latter vary by area we content

ourselves with achieving this in a “typical” area. The median of the inverse Ga(1,0.140) distribution

that was assumed for σ−2
v is 0.20, and so we take the prior for σ2

u as inverse Ga(1,0.20/0.59) where

the 0.59 factor adjusts for the disparity between the conditional and marginal variances. This prior gives

the marginal variances in Figure 1(b); comparison with panel (a) shows that the variances are larger, as

desired. Simulating from this prior gives, across areas, the median of the 0.025 quantile of exp(u) as 0.18

and the median 0.975 quantile as 5.14. These summaries tie in reasonably well with the [0.2,5] range for

exp(v). Figure 1, panels (c) and (d), plot the 0.025 and 0.975 quantiles of exp(u) versus the number of

neighbors and we see that the areas with fewer neighbors have a far greater spread, as we would expect.

Bernardinelli et al. (1995) describe a similar method based on simulations from the prior (for different

values of σ2
u), and evaluating the ratio of marginal to conditional variances. Figure 2 shows maps of

realizations from the unstructured and spatial random effects, with two sets for each. One set results from

taking the median value of σ2
v or σ2

u from the prior, and the other from taking the 0.95 point of the prior.

Notice that the scales of the shading on the maps differs across the four panels. Perhaps the most striking

feature of these maps is the difficulty in assessing visually the strength of smoothing.

Table 3 gives PQL and INLA results for models (0.3) and (0.4), and INLA results for models (0.5)
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Fig. 1. (a) Marginal standard deviations from ICAR model with σ2
u = 1, versus number of neighbors, (b) marginal

standard deviations from ICAR model with σ−2
u ∼ Ga(1, 0.20/0.59), versus number of neighbors, (c) empirical

0.025 quantile of residual relative risk from ICAR model with σ−2
u ∼ Ga(1, 0.20/0.59), versus number of neighbors,

(d) empirical 0.975 quantile of residual relative risk from ICAR model with σ−2
u ∼ Ga(1, 0.20/0.59), versus number

of neighbors.
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and (0.6); we could not fit the spatial models in standard software implementations of PQL. Breslow and

Clayton (1993) considered models with spatial random effects only, but when the ICAR random effects

are present we prefer to always include unstructured random effects, the reason being that since the ICAR

model contains only a single parameter to govern both the spatial extent of dependence, and the strength

of this dependence, there is no place for pure unstructured randomness to be accommodated (which can

be a problem, particularly if there is negligible spatial dependence). INLA and PQL again give similar

estimates and standard errors. When the spatial random effects are added in models (0.5) and (0.6) the

coefficient associated with the covariate is greatly attenuated. This is a common phenomenon and occurs

because the covariate has spatial structure, and the effect of any unmeasured confounders with spatial

structure will be soaked into the estimate associated with the covariate x. When spatial random effects are

included the spatial confounder effects can be accommodated in the ui’s. This also explains the decrease

in the estimate of σu when x is added to the model.

Model (0.3) Model (0.4) Model (0.5) Model (0.6)
Variable PQL INLA PQL INLA INLA INLA
Intercept 0.14± 0.11 0.08± 0.12 −0.44± 0.16 −0.49± 0.16 0.10±0.05 -0.11±0.11
x/10 — — 0.68± 0.14 0.68± 0.14 — 0.26±0.12
σv 0.76± 0.09 0.75± 0.10 0.60± 0.08 0.58± 0.09 0.05±0.03 0.05±0.03
σu — — — — 0.75±0.11 0.69±0.11

Table 3. PQL and INLA summaries for four models fitted to the Scotland data.

As an example of how straightforward the implementation for GLMMs is, we present the R code for

the Scotland example. Specifically, model (0.6), which includes a covariate and independent and spatial

random effects, is specified by the following code:

data(Scotland)

Scotland$Region2 <- Scotland$Region
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Fig. 2. Simulations from the prior for: (a) unstructured random effects with σv set at the median, and (b) set at the

95% point of the prior, (c) spatial random effects with σv set at the median, and (d) set at the 95% point of the prior.
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scotlandmod4 = inla(Counts˜1+I(X/10)+f(Region,model="iid",param=c(1,0.0014))+

f(Region2,model="besag",graph.file="scotland.graph",param=c(1,0.4/0.59)),

data=Scotland,family="poisson",E=E )

Crossed Random Effects: The Salamander Data

McCullagh and Nelder (1989) describe data on the success of matings between male and female salaman-

ders of two population types (roughbutts, RB, and whitesides, WS). The experimental design is complex

but involves three experiments having multiple pairings, with each salamander being involved in multiple

matings, so that crossed random effects are required. The first experiment was in the summer of 1986, and

the second and third were in the fall of 1986.

Let Yijk denote the response (failure/success) for female i and male j in experiment k. There are 360

binary responses in total. For illustration we fit model C that was previously considered by Karim and

Zeger (1992) and Breslow and Clayton (1993):

logit Pr(Yijk = 1|β, bf
ik, bm

jk) = xijkβk + bf
ik + bm

jk

where xijk is a 1× 4 vector representing the intercept and indicators for female WS, male WS, and male

and female both WS, and βk is the corresponding fixed effect (so that this model allows the fixed effects

to vary by experiment). The model contains six random effects:

bf
ik ∼iid N(0, σ2

fk), bm
ik ∼iid N(0, σ2

mk), k = 1, 2, 3

one for each of males and females, and in each experiment. We assume that for each of the random effects

the residual odds lies between 0.1 and 10 with probability 0.9, and that the marginal distribution of these

odds is a log Student t with 2 degrees of freedom so that Ga(1,0.622) priors are used for each of the six
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precisions, σ−2
fk , σ−2

mk for k = 1, 2, 3.

Table 4 gives results for the fixed effects and variance components, with the model fitted using both

REML and INLA. Again we see the reduction in standard errors in the REML analysis. There is some

attenuation of the Bayesian results here due to the INLA approximation strategy. This was revealed by

comparison with a Bayesian analysis was carried out with JAGS. For example, for the first two variance

components the JAGS posterior means were 1.42 and 0.85, as compared to the INLA results of 1.29 and

0.78, respectively.

Experiment 1 Experiment 2 Experiment 3
Variable REML INLA REML INLA REML INLA
Intercept 1.34±0.62 1.48±0.72 0.57±0.67 0.56±0.71 1.02±0.65 1.07±0.73
WSF -2.94±0.88 -3.26±1.01 -2.46±0.93 -2.51±1.02 -3.23±0.83 -3.39±0.92
WSM -0.42±0.63 -0.50±0.73 -0.77±0.72 -0.75±0.75 -0.82±0.86 -0.85±0.94
WSF× WSM 3.18±0.94 3.52±1.03 3.71±0.96 3.74±1.03 3.82±0.99 4.03±1.05
σf 1.25? 1.29±0.46 1.35? 1.38±0.50 0.59? 0.80±0.28
σm 0.27? 0.78±0.29 0.96? 1.00±0.36 1.36? 1.46±0.48

Table 4. REML and INLA summaries for Salamander data. For the entries marked with a ? standard errors were

unavailable.

A SIMULATION STUDY

The Salamander example with binary data shows some inaccuracy. Hence we now examine the accuracy

of INLA in the case of binomial data. Following the simulation study described in Zeger and Karim (1991)

and Breslow and Clayton (1993) we assume Yij |pij ∼ind Binomial(m, pij) with i = 1, ..., 100 clusters,

j = 1, ..., 7 observations per cluster, and with m varying across simulations, and taken to be one of 1, 2,
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4 and 8. Further, two models are examined:

logit pij = β0 + β1tj + β2xi + β3tjxi + b0i (0.7)

logit pij = β0 + β1tj + β2xi + β3tjxi + b0i + b1itj (0.8)

so that in the second model the slope varies by cluster. The sampling times are {−3,−2,−1, 0, 1, 2, 3},

with xi = 0 for half the sample, and 1 for the remainder. In model (0.7), b0i ∼iid N(0, σ2
0), with σ2

0 = 1,

while in model (0.8) (b0i, b1i) are zero mean bivariate normal with diagonal variance-covariance matrix,

Σ, with σ2
00 = 0.5, σ2

11 = 0.25. The values of the β parameters are given in Table 5.

Due to computational overheads, simulation studies are rarely reported for Bayesian methods; INLA

allows such studies to be quickly carried out, but care must be taken with prior specification, so as to not

favor one method over another. For model (0.7) we assume the prior σ−2
00 ∼ Ga(0.5, 0.0164) which has

2.5%, 50%, 97.5% quantiles of (0.0065,0.072,33.4) with 86% of the prior mass to the left of 1 (the value

used in the simulation). For model (0.8) we assume Σ−1 follow a Wishart distribution with 3 degrees of

freedom, and diagonal scale parameter with diagonal elements 0.17 and 0.025. The latter yields 2.5%,

50% and 97.5% points of (0.023,0.12,3.1) for σ2
0 and (0.0034,0.018,0.50) for σ2

11. These priors have 84%

and 72% of the mass the left of the values that were used to simulate the data. We note also that we are

evaluating the frequentist accuracy of Bayesian summaries.

Table 5 gives the mean parameter estimates over 100 simulations. For model (0.7) fixed effect esti-

mation is unbiased, but for m = 1 (and to a lesser extent m = 2) the estimate of σ2
00 is attenuated. For

model (0.8) there is some attenuation of the fixed effects in general, and more serious attenuation of the

variances, along with poor estimation of ρ. With reference to Table 1 of Breslow and Clayton (1993) we

note that INLA provides more accurate estimation than PQL.
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m σ2
00 σ2

11 ρ β0 β1 β2 β3

Truth 1.00 — — -2.50 1.00 -1.00 -0.50
1 0.67 — — -2.46 0.98 -1.01 -0.48
2 0.91 — — -2.52 1.00 -1.03 -0.48
4 0.97 — — -2.53 1.00 -1.00 -0.50
8 0.98 — — -2.53 1.01 -0.98 -0.50

Truth 0.50 0.25 0.00 -2.50 1.00 -1.00 -0.50
1 0.29 0.11 0.18 -2.42 0.97 -0.90 -0.48
2 0.27 0.17 0.43 -2.40 0.96 -0.97 -0.50
4 0.32 0.21 0.33 -2.44 0.98 -0.98 -0.51
8 0.40 0.23 0.14 -2.49 0.99 -0.97 -0.51

Table 5. Mean values (over 100 simulations) of parameter estimates in the binomial simulation study. The top and

bottom parts of the table give the results for models (0.7) and (0.8), respectively.

Table 6 gives the average posterior standard deviations along with the empirical standard deviations of

the posterior means (across simulations). This table may be compared directly with Table 2 of Breslow and

Clayton (1993) which evaluated the PQL method. We see a good correspondence between the standard

deviations for model (0.7), while for model (0.8) we see some discrepancy for m = 1.

We also analyzed the simulated data with MCMC (using the JAGS program), and with 200, 000

iterations being performed. Table 7 gives the average of the posterior means over the 100 simulations.

We see that for small m there is underestimation of the variances, due to the strong influence of the prior

(recall that our priors were such that the simulated value occur at the 0.72 to 0.86 quantile of the prior).

The β parameters are well estimated.

Tables 8 and 9 summarize the accuracy of INLA as compared to MCMC. For a generic parameter

θ each entry corresponds to (E[θinla|y] − E[θmcmc|y])/sd(θmcmc|y), where we transform the variance

components to the whole real line to make the summaries more meaningful. Hence we are examining the

size of the error relative to the “true” posterior standard deviation. We see that the error in approximation

is around 30% of the (true) posterior standard deviation for m = 1, but by m = 4, at least in the scenarios
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m σ2
00 σ2

11 ρ β0 β1 β2 β3

1 Sim 0.58 — — 0.32 0.14 0.48 0.22
Est 0.50 — — 0.31 0.13 0.46 0.20

2 Sim 0.42 — — 0.25 0.09 0.37 0.14
Est 0.37 — — 0.24 0.09 0.36 0.14

4 Sim 0.27 — — 0.20 0.06 0.33 0.09
Est 0.29 — — 0.20 0.07 0.29 0.10

8 Sim 0.22 — — 0.18 0.05 0.29 0.07
Est 0.25 — — 0.17 0.05 0.25 0.07

1 Sim 0.16 0.11 0.30 0.29 0.17 0.43 0.25
Est 0.30 0.11 0.52 0.28 0.14 0.43 0.21

2 Sim 0.15 0.10 0.32 0.22 0.12 0.35 0.16
Est 0.19 0.09 0.38 0.20 0.11 0.31 0.16

4 Sim 0.19 0.07 0.30 0.17 0.10 0.25 0.13
Est 0.18 0.07 0.30 0.17 0.10 0.24 0.14

8 Sim 0.17 0.05 0.23 0.13 0.08 0.22 0.11
Est 0.15 0.06 0.21 0.14 0.09 0.20 0.12

Table 6. Average estimated posterior deviations, and empirical standard deviation (over 100 simulations) of the pos-

terior means in the binomial simulation study. The top and bottom parts of the table give the results for models (0.7)

and (0.8), respectively.

m σ2
00 σ2

11 ρ β0 β1 β2 β3

Truth 1.00 — — -2.50 1.00 -1.00 -0.50
1 0.90 — — -2.55 1.02 -1.05 -0.49
2 1.03 — — -2.56 1.02 -1.04 -0.48
4 1.04 — — -2.54 1.01 -1.01 -0.50
8 1.02 — — -2.53 1.01 -0.98 -0.50

Truth 0.50 0.25 0.00 -2.50 1.00 -1.00 -0.50
1 0.36 0.14 0.31 -2.49 1.00 -0.93 -0.49
2 0.31 0.19 0.47 -2.43 0.97 -0.99 -0.50
4 0.35 0.22 0.33 -2.45 0.98 -0.98 -0.51
8 0.43 0.24 0.13 -2.49 1.00 -0.97 -0.51

Table 7. Average of posterior means from MCMC analysis of 100 simulated datasets. The top and bottom parts of the

table give the results for models (0.7) and (0.8), respectively.
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m log σ−2
00 log σ−2

11 logit [(1 + ρ)/2] β0 β1 β2 β3

1 0.35 — — 0.26 -0.25 0.08 0.04
2 0.29 — — 0.13 -0.14 0.04 0.01
4 0.17 — — 0.06 -0.09 0.01 0.01
8 0.10 — — 0.02 -0.05 0.01 0.00
1 0.22 0.30 -0.28 0.20 -0.17 0.07 -0.01
2 0.17 0.15 -0.13 0.09 -0.06 0.04 -0.04
4 0.18 0.08 0.00 0.02 -0.00 0.01 -0.01
8 0.17 0.07 0.06 0.01 -0.01 0.01 0.00

Table 8. Comparison between INLA and MCMC. For a generic parameter θ each entry corresponds to (E[θinla|y]−

E[θmcmc|y])/sd(θmcmc|y). The top and bottom parts of the table give the results for models (0.7) and (0.8), respec-

tively.

m log σ−2
00 log σ−2

11 logit [(1 + ρ)/2] β0 β1 β2 β3

1 1.12 — — 0.84 0.87 0.86 0.89
2 1.07 — — 0.91 0.91 0.91 0.92
4 1.00 — — 0.95 0.94 0.94 0.95
8 0.99 — — 0.98 0.97 0.97 0.97
1 1.01 1.05 1.00 0.85 0.84 0.90 0.91
2 1.02 1.09 1.02 0.91 0.93 0.93 0.96
4 1.02 1.02 1.02 0.95 0.96 0.96 0.98
8 1.02 1.00 1.02 0.97 0.98 0.97 0.99

Table 9. Ratio of posterior variances as estimated by INLA, as compared to those estimated by MCMC. The top and

bottom parts of the table give the results for models (0.7) and (0.8), respectively.

considered here, the approximation is reasonable. This is confirmed by Table 9 in which we examine

the ratio of posterior variances Var(θinla|y)/Var(θmcmc|y). The posterior variance for the transformed

variance components are overestimated, but only slightly, while the posterior variances for the regression

coefficients are underestimated.
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