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We present examples to illustrate the use of leave-group-out cross-validation (LGOCV) in INLA. The first example
demonstrates the primary function used to compute the LGOCV, while the second example introduces additional
features.

Basic Functionality: Multilevel Model

Let us assume that we have collected repetitive measurements of the weights of some rats with measurement errors.
We denote each measurement as yi, and each yi is associated with the ID of the corresponding rat, denoted as
idi. For the purposes of our analysis, we have simulated the data according to a true model. Specifically, we have
simulated data for 10 rats, each with 10 measurements. We then plot the vector y against the group ID for each
measurement.
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We can fit a multilevel model to the data and use it to make two types of predictions. The first prediction is to
estimate the weight of another measurement from rat one, while the second prediction is to estimate the weight of
a measurement from another rat. In INLA, there is no separate predict function for making predictions. Instead,
predictions are made as a part of the model fitting process itself. Since making predictions is essentially the same as
fitting a model with some missing data, we can simply set y[i] = NA for those locations for which we wish to make
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predictions.

data = data.frame(y = c(y,rep(NA,n_rat+1)),id = c(id,1:n_rat,n_rat+1))

formula = y ~ 1 + f(id,model = "iid")

res = inla(formula = formula,

data = data,

family = "normal"

)

We present the predictive densities for the two prediction tasks below, which are given by

π(Ỹ |y) =

∫
π(θ|y)

∫
π(η̃|θ, y)π(Ỹ |η̃, θ)dη̃dθ,

where each prediction task is associated with a specific π(Ỹ |η̃, θ).
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To evaluate the accuracy of the first prediction, we can use LOOCV with a logarithmic utility. The LOOCV
logarithmic utility can be expressed as:

ULOOCV =
1

n

n∑
i=1

π(Yi = yi|y−i).

To assess the quality of the second prediction, we can use leave-group-out cross-validation (LGOCV), where the
group includes all measurements from a particular rat. The LGOCV logarithmic utility can be expressed as:

ULGOCV =
1

n

n∑
i=1

π(Yi = yi|y−Ii
).

Here, Ii represents the indices of data points from the same rat. We can compute ULOOCV and ULGOCV using the
inla.group.cv function.

loocv_res = inla.group.cv(result = res)

ULOOCV = mean(log(loocv_res$cv[1:n]))

groups = lapply(1:n,FUN = function(i){which(id == id[i])})

lgocv_res = inla.group.cv(result = res,groups = groups)

ULGOCV = mean(log(lgocv_res$cv[1:n]))

print(paste0("ULOOCV is ", round(ULOOCV,5),"."))

[1] "ULOOCV is 0.83433."

print(paste0("ULGOCV is ", round(ULGOCV,5),"."))

[1] "ULGOCV is -0.56472."
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In the previous code, we manually provided the groups. However, inla.group.cv also has the ability to automatically
construct groups for LGOCV. This method was described the preprint https://arxiv.org/abs/2210.04482. Using this
automatic method, the resulting groups are the same as the manual ones we provided earlier. The extra data points
101 does not have effect on the result since y101 is NA.

lgocv_auto_res = inla.group.cv(result = res,num.level.sets = 1)

ULGOCV_auto = mean(log(lgocv_auto_res$cv[1:n]))

print(paste0("ULGOCV_auto is ", round(ULGOCV_auto,5),"."))

[1] "ULGOCV_auto is -0.56472."

print(paste0("The group for data point 1 is:"))

[1] "The group for data point 1 is:"

print(paste(lgocv_auto_res$groups[[1]]$idx,collapse=" "))

[1] "1 2 3 4 5 6 7 8 9 10 101"

The automatic construction of the groups is based on the posterior correlation coefficients of linear predictors. The
parameter num.level.sets controls the degree of independence between yi and y−Ii

. Higher num.level.sets

means higher independence between yi and y−Ii
.

How do ‘num.level.sets‘ and correlation define a group?

We use a small example to illustrate the meaning of num.level.sets = 3. If Ci contains the correlation of all j to
i, we construct the group for i using the following procedure.

num.level.sets = 3

# We intentionally create some replicated correlations since it is not rare to have

#|corr(eta_i,eta_j)| == |corr(eta_i,eta_k)|, where j != k.

C_i = c(1,1,0.9,0.9,0.8,0.8,-0.1,-0.1,0,0)

# L_i contains the correlation levels.

L_i = sort(unique(abs(C_i)),decreasing = T)

# Now we construct I_i

I_i = c()

for (l in 1:num.level.sets){

I_i = c(I_i,which(abs(C_i) == L_i[l]))

}

print(paste(I_i,collapse=" "))

[1] "1 2 3 4 5 6"

Additional Features: Multilevel Model with Covariates

We have multiple weight measurements for several rats denoted by yi, each with an associated rat id idi, and a
covariate xi associated with each measurement but not with the rat.
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We fit a multilevel model with random intercepts and random slopes.
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data = data.frame(y = y,id = id,id2 = id,x = x)

formula = y ~ 1 + x + f(id, model = "iid") + f(id2, W = x,model = "iid")

res = inla(formula = formula,

data = data,

family = "normal",

control.compute = list(config = TRUE)

)

Model Comparasion: Unify Groups

We want to compare two models: one with random slopes and one without random slopes. To ensure that we have
the same groups for the different models, we can pass an inla.group.cv class object to inla.group.cv function.
Here is an example:

We first fit the model without random slopes.

formula_alt = y ~ 1 + x + f(id, model = "iid")

res_alt = inla(formula = formula_alt,

data = data,

family = "normal",

control.compute = list(config = TRUE)

)

If we want to use the groups constructed by the full model to compute LGOCV, we have the following code.

lgocv_res = inla.group.cv(result = res,num.level.sets = 1)

lgocv_res_alt = inla.group.cv(result = res_alt,group.cv = lgocv_res)

Using Prior Correlation to Construct Groups Automatically

We check the result using automatic groups construction. We first check the group for data point 1, 2 and 3.

lgocv_res = inla.group.cv(result = res,num.level.sets = 1)

print(paste(lgocv_res$groups[[1]]$idx,collapse=" "))

[1] "1 4 10"

print(paste(lgocv_res$groups[[2]]$idx,collapse=" "))

[1] "2 5 6"

print(paste(lgocv_res$groups[[3]]$idx,collapse=" "))

[1] "3"

The groups are different from the manual group. The reason is that the posterior correlation of the linear predictors
considering all the effects including the linear effects and the iid effects. The manual group is formed based on the
prior information of the iid effect. We can pass the message to the automatic construction through keep option,
which should work with strategy = "prior". That means we construct groups using prior correlation with only
effects specified by the arguments keep.

lgocv_res = inla.group.cv(result = res,num.level.sets = 1,strategy = "prior",keep = "id")

print(paste(lgocv_res$groups[[1]]$idx,collapse=" "))

[1] "1 2 3 4 5 6 7 8 9 10"

print(paste(lgocv_res$groups[[2]]$idx,collapse=" "))

[1] "1 2 3 4 5 6 7 8 9 10"

print(paste(lgocv_res$groups[[3]]$idx,collapse=" "))

[1] "1 2 3 4 5 6 7 8 9 10"
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Select Testing Points

In some applications, we may not want to iterate over the whole data set. A typical scenario is that we are working
on a very large data set. To select a subset as our testing points, we can use select arguments in inla.group.cv.
Here is an example. We only want to have 12th data point and 53th data point as our testing points.

lgocv_res = inla.group.cv(result = res,num.level.sets = 1,select = c(12,53))

In this way, we only compute quantities related to π(y12|y−I12
) and π(y53|y−I53

).

If we are using manual groups construct we only need to specify the groups for 12th and 53th data point.

groups = vector(mode = "list",length = n)

groups[[12]] = which(id==id[12])

groups[[53]] = which(id==id[53])

lgocv_res = inla.group.cv(result = res,groups = groups)

Using All the Hyperarameter Configrations

To speed up the computation speed, inla.group.cv computes π(yi|θ
∗, y−Ii

), where θ∗ is the mode of π(θ|y). In
order to compute π(yi|y−Ii

) =
∫

π(yi|θ, y−Ii
)π(θ|y−Ii

)dθ, we need to enable the control.gcpo option while fitting
the model, which is in control.compute. The result are stored in res$gcpo in the same format as the output of
the inla.group.cv. Here is the example code.

control.gcpo = list(enable = TRUE,num.level.sets = 1)

res = inla(formula = formula,

data = data,

family = "normal",

control.compute = list(control.gcpo = control.gcpo,config = TRUE)

)

Compute Other Utility Functions

In the outputs of inla.group.cv, we have access to mean (lgocv.res$mean) and standard deviation(lgocv.res$sd)
of a Gaussian approximation of π(ηi|θ

∗, y−Ii
). With this we can compute any scoring rules, which is a function

of the observed data yi and the predictive density π(Yi|θ
∗, y−Ii

). The predictive density can be computed by the
integral:

π(Yi|θ
∗, y−Ii

) =

∫
π(Yi|ηi, θ∗)π(ηi|θ

∗, y−Ii
)dηi,

where the likelihood π(Yi|ηi, θ∗) is given by the model and the posterior is contained in the outputs.

If we want to also integrate out the uncertainty of the hyperparameters, we need to compute

π(Yi|θ, y−Ii
) =

∫
π(θ|y−Ii

)

∫
π(Yi|ηi, θ)π(ηi|θ, y−Ii

)dηidθ,

where π(θ|y−Ii
) is computed using π(θ|y−Ii

) ∝ π(θ|y)
f(θ|y

Ii
) . [@liu2022leave] The location of each component is organized

in the following list:

log π(θ|y) is contained in

res$misc$configs$config[k]$log.posterior.

The correction term − log f(θ|yIi
) is contained in

res$misc$configs$config[[1]]$gcpodens.moments[,"log.theta.correction"].

The mean of π(ηi|θ, y−Ii
) is contained in

res$misc$configs$config[[1]]$gcpodens.moments[,"mean"].

The variance of π(ηi|θ, y−Ii
) is contained in

res$misc$configs$config[[1]]$gcpodens.moments[,"variance"].
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As an example, we compute the Continuous Ranked Probability Score (CRPS) and present its definition. Suppose
Y is a random variable with cumulative distribution function F (y), and let yobserved be the observed value. The
CRPS is defined as:

CRPS(F, yobserved) =

∫ ∞

−∞

(F (y) − (1y≥yobserved
))2dy,

where 1y ≥ yobserved is the indicator function that takes the value 1 when y ≥ yobserved and 0 otherwise.

To evaluate the non-parametric predictive density, we obtain samples by first sampling θ from π(θ|y−Ii), then
sampling π(ηi|θ, y−Ii), and finally obtaining samples of the predictive density by sampling from π(Yi|ηi, θ). With the
samples of the predictive density, we can compute its empirical cumulative function to evaluate CRPS(F, yobserved).
The following code demonstrates this process:

control.gcpo = list(enable = TRUE,num.level.sets = 1,strategy = "prior",keep = "id")

res = inla(formula = formula,

data = data,

family = "normal",

control.compute = list(control.gcpo = control.gcpo,config = TRUE)

)

# 1. choose the testing point

testing.point = 1

y_observed = y[testing.point]

# 2. get the hyperparameter density

nconfigs = res$misc$configs$nconfig

weights = unlist(lapply(X = 1:nconfigs,

FUN = function(config.idx){

res$misc$configs$config[[config.idx]]$log.posterior

+ res$misc$configs$config[[config.idx]]$gcpodens.moments[testing.point,3]

}))

weights = exp(weights)/sum(exp(weights))

#3. get samples of y_i|y_{-I_i},theta

n = 1e6

n_theta = as.numeric(rmultinom(n = 1,size = n,prob = weights))

y_sample = c()

for(config.idx in 1:nconfigs){

if(n_theta[config.idx]>0){

eta = rnorm(n_theta[config.idx],

mean = res$misc$configs$config[[config.idx]]$gcpodens.moments[testing.point,1],

sd = sqrt(res$misc$configs$config[[config.idx]]$gcpodens.moments[testing.point,2]))

sd = sqrt(1/exp(res$misc$configs$config[[config.idx]]$theta[1]))

y_sample_config = rnorm(n = n_theta[config.idx],mean = eta,sd = sd)

y_sample = c(y_sample,y_sample_config)

}

}

#4 We can use y_sample to compute the empirical cumulative function then evaluate CRPS

F_y = function(y){sum(y_sample<=y)/n} #inefficient but straightforward...

yy = seq(min(y_sample)-10,max(y_sample)+10,0.01)

FF = unlist(lapply(yy,F_y))

CRPS = pracma::trapz(yy,(FF-(yy>=y_observed))ˆ2)
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