
SPDE example with multiple kind of outcomes

Joint modeling with mdata, inla.surv and counts with exposure

Elias T Krainski

2023, March

Abstract

The INLA package supports different kinds of data likelihoods, including the inla.surv, which is a
generalization of the Surv from the survival package, and mdata. It also support joint modeling different
kind of outcomes. In this vignette we illustrate the case when we have three outcomes, of different type, and
model them jointly.

Introduction

Usually correlations between outcomes are modeled by sharing common model terms in the linear predictor.
These terms can be covariates, random effects or sums of these. In some cases, the likelihood requires more
information than just the vector of observations. As an example, the likelihood for survival models requires
both observed times and information about censoring.

In this vignette we consider a joint model for three outcomes, simulate data from this model and illustrate
how to fit the joint model accounting for shared terms. The linear predictor for each outcome includes
covariates and a spatial random effect modeled using the SPDE approach.

The first outcome is known at an aggregated level, in a setting were we model it considering a kind of
likelihood designed in INLA to account for all the information available with respect to the aggregation. The
second outcome is assumed to be censored, so that we have to consider the observed value and the censoring
information. The third outcome is just the usual kind of data: one scalar per data unit.

The spatial domain

The SPDE models available in INLA could be applied for processes in R
d or S

d, for d = 1, 2, and the theory
in Lindgren, Rue, and Lindström (2011) include higher dimentional domains. We consider a spatial domain,
D ∈ R

2 to keep the example simple. Without loss off generality we consider D as a rectangle defined as

bb <- rbind(c(0, 10), c(0, 7))

Next, we store the length of each side and its average for later use

rxy <- apply(bb, 1, diff)

rr <- mean(rxy)

We sample a set of n locations, l1, ..., ln, in this domain, li ∈ D, completely at random as follows:

n <- 1000

loc <- cbind(

runif(n, bb[1, 1], bb[1, 2]),

runif(n, bb[2, 1], bb[2, 2]))

1

A spatial field

Instead of simulating from a model to play as a spatial smooth term, we define a smooth function on this
domain as follows

sfn <- function(a, b)

sin(a - b) + cos(a + b)

This function is evaluated at the n locations and visualized with

u <- sfn(2 * pi * loc[, 1] / rr,

2 * pi * loc[, 2] / rr)

summary(u)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> -1.98934 -0.76929 -0.01775 -0.07667 0.58622 1.99288

par(mar = c(2, 2, 0, 0), mgp = c(1.5, 0.5, 0), las = 1)

plot(loc, asp = 1, pch = 19, cex = 0.5 + (2 + u)/4, xlab = "", ylab = "")

Spatial sub-domains

In order to define the first outcome, let us partition our domain into a set of sub-regions, r1, r2, ..., rg, so that
ri ∩ ri = � and ∪g

i=1rj = D.

For simplicity of coding, but without loss of generality, we assume these small sub-regions to be pixels based
in the following set of centers:

h <- 1 ## size of the side of each sub-region

group.ce <- as.matrix(expand.grid(

seq(bb[1, 1] + h/2, bb[1, 2], h),

seq(bb[2, 1] + h/2, bb[2, 2], h)))

(ng <- nrow(group.ce))

#> [1] 70

We can avoid the need of dealing with the general spatial objects and operations available in R and identify
each location li to each sub-region rj with an integer vector as

group.id <- ceiling(loc[,1]/h) +

ceiling(rxy[1]/h) * (ceiling(loc[,2]/h)-1)

2

This will be used as a grouping index, so that each group is made of the observations falling in each of the
pixels. We will visualize the locations with color depending on this grouping later.

Covariates

Let us consider a set of three covariates for each location as

xxx <- cbind(x1 = runif(n), x2 = runif(n), x3 = runif(n))

We average the covariates by group as we will consider that we have data at the group level to model the
first outcome.

xxx.g <- aggregate(xxx, list(g = group.id), mean)

str(xxx.g)

#> 'data.frame': 70 obs. of 4 variables:

#> $ g : num 1 2 3 4 5 6 7 8 9 10 ...

#> $ x1: num 0.542 0.453 0.413 0.501 0.58 ...

#> $ x2: num 0.515 0.435 0.39 0.638 0.46 ...

#> $ x3: num 0.548 0.558 0.607 0.557 0.49 ...

Outcomes

We will consider three outcomes.

First outcome: aggregated Gaussian

The first outcome is Gaussian distributes, with unknown mean and variance, and a known scaling factor, s,
such that

yi ∼ N(µi, siσ
2).

We assume ηy = {µ1, ..., µn} and
ηy = Xβy + u.

This is being evaluated considering the covariate and random effect averaged per group:

beta.y <- c(5, 0, -3, 3)

u.g <- tapply(u, group.id, mean)

eta.y.g <- drop(cbind(1, as.matrix(xxx.g[, 2:ncol(xxx.g)])) %*% beta.y) + u.g

We will simulate the scaling factor for each observation with

s <- rgamma(n, 7, 3)

summary(s)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 0.3739 1.7863 2.2935 2.3933 2.9033 6.0581

sigma.y <- 1

y <- rnorm(n, eta.y.g[group.id], sqrt(sigma.y/s))

summary(y)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 1.090 4.075 4.964 4.947 5.841 8.347

We simulated yi for each location li. However, we consider that observations of this variable are available
only at the aggregated level, at each of the sub-regions rj . Furthermore, for each sub-region rj , we know

• how many observations were taken in each sub-region, nj =
∑n

i=1 I(li ∈ rj)
• the weighted average yj = (nj)−1

∑
i,li∈rj

siyi,

• the sum o the scaling factors, mj =
∑

i,li∈rj
si,

3

• the half of the sum of the log of the scaling factors, 1
2

∑
i,li∈rj

log(si),

• and the sample variance within each unit, defined as vj = 1
nj

∑n

i,li∈rj
(siy

2
i − y2

j)

The function inla.agaussian computes these five statistics, given yi and si for each group. We use this
function to compute these statistics, as follows

library(INLA)

#> Loading required package: Matrix

#> Loading required package: foreach

#> Loading required package: parallel

#> Loading required package: sp

#> This is INLA_23.04.11 built 2023-04-10 20:51:17 UTC.

#> - See www.r-inla.org/contact-us for how to get help.

#> - To enable PARDISO sparse library; see inla.pardiso()

agg <- lapply(1:ng, function(g) {

ig <- which(group.id==g)

if(length(ig)>0)

return(inla.agaussian(y[ig], s[ig]))

return(inla.mdata(list(NA, 0, 1, 1, NA))) ### a deal with missing

})

str(YY <- Reduce('rbind', lapply(agg, unlist))) ## five columns matrix

#> num [1:70, 1:5] 0.218 0.418 0.15 0.389 0.242 ...

#> - attr(*, "dimnames")=List of 2

#> ..$: chr [1:70] "init" "" "" "" ...

#> ..$: chr [1:5] "Y1" "Y2" "Y3" "Y4" ...

Second outcome: Survival

For the second outcome we choose a Weibull distribution with the following parametrization

fW (wi) = αwα−1
i λα

i e−(λiwi)α

.

We define the linear predictor as ηw = {log(λ1), ..., log(λn)} and

ηw = Xβw + γwu

and we consider the following code to sample from a Weibull distribution

beta.w <- c(1, -1, 0, 1)

alpha <- 2

gamma.w <- 0.5

lambdaw <- exp(cbind(1, xxx) %*% beta.w + gamma.w * u)

we0 <- rweibull(n, shape = alpha, scale = 1/lambdaw)

summary(we0)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 0.01604 0.15938 0.29232 0.40070 0.54882 2.32019

However, we suppose that some observations are censored

summary(u.ev <- runif(n, 0.3, 1)) ## censoring factor

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 0.3006 0.4792 0.6429 0.6466 0.8066 0.9985

table(event <- rbinom(n, 1, 0.5)) ## censored (=0) or event (=1)

#>

#> 0 1

#> 519 481

4

summary(we <- ifelse(event == 1, we0, we0 * u.ev)) ## censored outcome

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 0.01096 0.11519 0.23098 0.32351 0.41337 2.18450

Third outcome: Count under exposure

We consider that we have different exposure at each location

summary(ee <- rgamma(n, 10, 2))

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 1.779 3.875 4.833 4.989 5.933 9.679

We assume an outcome following a Poisson distribution with

Oi ∼ Poisson(δiEi).

We assume the linear predictor as ηp = {log(δ1), ..., log(δn)} and

ηp = Xβp + γpu

This outcome is being simulated with

beta.p <- c(2, 1, -1, 0)

gamma.p <- -0.3

delta.p <- exp(cbind(1, xxx) %*% beta.p + gamma.p * u)

po <- rpois(n, delta.p * ee)

summary(po)

#> Min. 1st Qu. Median Mean 3rd Qu. Max.

#> 4.00 23.00 35.00 42.27 55.00 186.00

Data model setup

We now have to setup the objects in order to fit the model.

SPDE model setup

We have to define a mesh over the domain. We do it considering the following code

mesh <- inla.mesh.2d(

loc.domain = matrix(bb[c(1,3,3,1,1, 2,2,4,4,2)], ncol = 2),

offset = c(.0001, .5) * rr, ## extensions size

max.edge = c(.05, .3) * rr,

cutoff = 0.025 * rr)

mesh$n

#> [1] 1157

This mesh and the locations colored by the group defined for the first outcome can be visualized with

par(mar = c(0, 0, 1, 0), mgp = c(1.5, 0.5, 0))

plot(mesh, asp = 1, edge.color = gray(0.5))

points(loc, pch = 19, col = group.id, cex = 0.3 + (2 + u)/4)

5

The SPDE model is defined with

spde <- inla.spde2.pcmatern(

mesh,

prior.range=c(1, 0.1),

prior.sigma=c(1, 0.1))

Linear predictor components

We will fit a joint model considering the linear predictor with terms as how it was simulated. The inla.stack()

function in meant to me used when working with SPDE models. However, it also helps when considering
multiple likelihood data as detailed below.

One way to deal with multiple likelihoods in INLA is defining matrix data for the outcome where each
column is used for each likelihood. However, in this vignette we are dealing with more complex cases.
Therefore, he need to use list in the left hand side of the formula. This is the key point to implement this
example.

The right hand side of the formula includes each term in the linear predictor. When working with multiple
likelihood, each term in each likelihood should be named uniquely. For example, if two likelihoods include the
same covariate but with a different coefficient, each one has to have its own name. Therefore, we will pass
the covariate x1 as x1y, for the first outcome, x1w for the second outcome, and x1p for the third outcome.
Similarly for the other ones, including the intercept.

In our example, the SPDE model is in the linear predictor for the first outcome, a copy from this random
effect in in the linear predictor for the second outcome, and another copy of this term is in the linear predictor
for the third outcome.

The model formula considering all of these details is defined as

fff <- list(

inla.mdata(Y),

inla.surv(w, ev),

o) ~ 0 +

a1 + x1y + x2y + x3y + f(s, model = spde) +

a2 + x1w + x2w + x3w + f(sc1, copy = "s", fixed = FALSE) +

a3 + x1p + x2p + x3p + f(sc2, copy = "s", fixed = FALSE)

6

Building data stacks

The data has to be organized so it contains all the information needed, that is all the outcomes, covariates
and random effect indexes. For the SPDE models it also has to include the projector matrices.

The main work of the inla.stack() function is to check and organize outcomes, effects and projector
matrices in order to guarantee that the dimentions match. Additionally, inla.stack() will deal with the
problem of arranging the outcomes to work properly with multiple likelihoods.

For the first outcome, we need to supply a five column matrix, each with one of the five statistics previously
computed for the ng groups. For the effects we define an intercept, covariates with names according to what
the formula specify and the index for the SPDE model. The projector matrices is one for the fixed effect,
which is just 1, and the one for the SPDE model.

We will include a different tag for each stack to keep track. This is useful to collect results associated to each
outcome. For each outcome we can also define an indicator vector to identify it. This is useful for the case of
having some missing data. In this case the indicator can be used to identify which link to be used for making
the predictions.

The stack for the first outcome can be defined as

stackY <- inla.stack(

tag = 'y',

data = list(Y = YY),

effects= list(

data.frame(a1 = 1,

x1y = xxx.g$x1,

x2y = xxx.g$x2,

x3y = xxx.g$x3),

s = 1:mesh$n),

A=list(1,

inla.spde.make.A(mesh, group.ce))

)

For the second outcome, we have to supply two vectors (observed time and censoring) to build the inla.surv

data, the covariates, with names according to the terms in the formula, and the projector matrices, the single
1 for the covariates and the projector for the shared SPDE term.

The stack for the second outcome can be defined as

stackW <- inla.stack(

tag = 'w',

data = list(w = we,

ev = event),

effects = list(

data.frame(a2 = 1,

x1w = xxx[, 1],

x2w = xxx[, 2],

x3w = xxx[, 3]),

sc1 = 1:mesh$n),

A = list(1,

inla.spde.make.A(mesh, loc))

)

For the third outcome we have to supply the vector of counts and the vector with the exposure. The effects
and projector are similar with the previous others, just that we have to account for its names.

The stack for the third outcome can be defined as

7

stackP <- inla.stack(

tag = 'p',

data = list(o = po,

E = ee),

effects = list(

data.frame(a3 = 1,

x1p = xxx[, 1],

x2p = xxx[, 2],

x3p = xxx[, 3]),

sc2 = 1:mesh$n),

A = list(1,

inla.spde.make.A(mesh, loc))

)

Fitting the model and some results

We now fit the model and look at some results.

Model fitting

To fit the model we start by joining all the data into one data stack

stacked <- inla.stack(stackY, stackW, stackP)

We now supply this to the inla() function in order to fit the model

result <- inla(

formula = fff,

family = c("agaussian", "weibullsurv", "poisson"),

data = inla.stack.data(stacked),

E = E,

control.predictor = list(

A=inla.stack.A(stacked)),

control.family = list(

list(),

list(variant = 1),

list()),

control.compute = list(dic = TRUE, waic = TRUE, cpo = TRUE)

)

#> Warning in inla.model.properties.generic(inla.trim.family(model), mm[names(mm) == : Model 'agaussian'

#> Use this model with extra care!!! Further warnings are disabled.

result$cpu

#> Pre Running Post Total

#> 1.7633827 69.1093037 0.1796355 71.0523219

Summaries

We now compare the true value for each fixed effect with its posterior summary.

round(cbind(

true = c(beta.y, beta.w, beta.p),

result$summary.fix), 2)

#> true mean sd 0.025quant 0.5quant 0.975quant mode kld

#> a1 5 5.62 1.23 3.20 5.62 8.06 5.62 0

#> x1y 0 -0.02 0.43 -0.86 -0.02 0.83 -0.02 0

8

#> x2y -3 -3.40 0.36 -4.11 -3.40 -2.70 -3.41 0

#> x3y 3 3.09 0.37 2.36 3.09 3.82 3.09 0

#> a2 1 1.02 0.56 -0.08 1.02 2.13 1.02 0

#> x1w -1 -1.06 0.07 -1.20 -1.06 -0.91 -1.06 0

#> x2w 0 0.02 0.07 -0.11 0.02 0.16 0.02 0

#> x3w 1 1.03 0.07 0.89 1.03 1.18 1.03 0

#> a3 2 1.85 0.36 1.13 1.85 2.56 1.85 0

#> x1p 1 1.01 0.02 0.98 1.01 1.05 1.01 0

#> x2p -1 -1.01 0.02 -1.04 -1.01 -0.98 -1.01 0

#> x3p 0 -0.01 0.02 -0.04 -0.01 0.03 -0.01 0

For the hyper-parameters, we have one for the agaussian likelihood, one for the weibulsuv, two for the
SPDE model and two that define the scaling for the shared SPDE terms in the second and third outome.

round(cbind(true = c(1/sigma.yˆ2, alpha, NA, NA, gamma.w, gamma.p),

result$summary.hy), 2)

#> true mean sd 0.025quant 0.5quant

#> Precision for the AggGaussian observations 1.0 1.03 0.05 0.93 1.03

#> alpha parameter for weibullsurv[2] 2.0 2.13 0.01 2.10 2.13

#> Range for s NA 10.18 0.98 8.37 10.15

#> Stdev for s NA 1.45 0.10 1.26 1.44

#> Beta for sc1 0.5 0.47 0.03 0.41 0.47

#> Beta for sc2 -0.3 -0.31 0.01 -0.32 -0.31

#> 0.975quant mode

#> Precision for the AggGaussian observations 1.13 1.04

#> alpha parameter for weibullsurv[2] 2.15 2.13

#> Range for s 12.20 10.10

#> Stdev for s 1.66 1.44

#> Beta for sc1 0.52 0.47

#> Beta for sc2 -0.29 -0.30

Results considering each outcome

To collect outputs associated with each data, we need to consider the tag from each data stack to get the
data index from the joint stack. For example, the data index for the third outcome is

idx1 <- inla.stack.index(stacked, tag = "p")$data

We can see the summary for the fitted values for the first few observations of this outcome with

head(cbind(true = delta.p,

result$summary.fitted.values[idx1,]), 3)

#> true mean sd 0.025quant 0.5quant

#> fitted.APredictor.1071 9.798490 9.943240 0.4267701 9.133347 9.933701

#> fitted.APredictor.1072 11.039282 10.832343 0.4346773 10.003887 10.823849

#> fitted.APredictor.1073 8.644928 8.271186 0.3716379 7.561106 8.264553

#> 0.975quant mode

#> fitted.APredictor.1071 10.807484 9.914743

#> fitted.APredictor.1072 11.709211 10.806930

#> fitted.APredictor.1073 9.019168 8.251309

For access the DIC, WAIC and log score can consider the family indicator stored in the DIC output as follows

str(result$dic)

#> List of 14

#> $ dic : num 8452

9

#> $ p.eff : num 119

#> $ mean.deviance : num 8333

#> $ deviance.mean : num 8214

#> $ dic.sat : num 2054

#> $ mean.deviance.sat: num 1935

#> $ deviance.mean.sat: num 1812

#> $ family.dic : num [1:3] 2047.1 -15.6 6420.4

#> $ family.dic.sat : num [1:3] 92.2 935.9 1030.8

#> $ family.p.eff : num [1:3] 33.8 12.3 72.8

#> $ family : num [1:2070] 1 1 1 1 1 1 1 1 1 1 ...

#> $ local.dic : num [1:2070] 27.2 31.6 18.9 31.2 34.1 ...

#> $ local.dic.sat : num [1:2070] 2.826 1.042 0.902 1.165 2.264 ...

#> $ local.p.eff : num [1:2070] 0.615 0.463 0.625 0.553 0.654 ...

str(result$waic)

#> List of 4

#> $ waic : num 8445

#> $ p.eff : num 100

#> $ local.waic : num [1:2070] 27.9 31.3 18.4 30.9 34.6 ...

#> $ local.p.eff: num [1:2070] 1.069 0.148 0.123 0.196 0.816 ...

str(result$cpo)

#> List of 3

#> $ cpo : num [1:2070] 6.19e-07 1.53e-07 9.92e-05 1.89e-07 2.30e-08 ...

#> $ pit : num [1:2070] 0.00341 0.35567 0.50651 0.2645 0.01485 ...

#> $ failure: num [1:2070] 0 0 0 0 0 0 0 0 0 0 ...

resultdicfamily.dic ### DIC for each outcome

#> [1] 2047.09463 -15.62159 6420.40390

tapply(result$waic$local.waic,

resultdicfamily, ## taken from dic family id

sum) ## WAIC for each outcome

#> 1 2 3

#> 2039.81545 -15.26326 6420.90721

tapply(resultcpocpo,

resultdicfamily, ## taken fron dic family id

function(x)

c(nlCPO = -sum(log(x)))) ## -sum log CPO for each outcome

#> 1 2 3

#> 1024.484413 -7.544739 3211.325779

References
Lindgren, F., H. Rue, and J. Lindström. 2011. “An Explicit Link Between Gaussian Fields and Gaussian

Markov Random Fields: The Stochastic Partial Differential Equation Approach (with Discussion).” J. R.

Statist. Soc. B 73 (4): 423–98.

10

	Abstract
	Introduction
	The spatial domain
	A spatial field
	Spatial sub-domains
	Covariates

	Outcomes
	First outcome: aggregated Gaussian
	Second outcome: Survival
	Third outcome: Count under exposure

	Data model setup
	SPDE model setup
	Linear predictor components
	Building data stacks

	Fitting the model and some results
	Model fitting
	Summaries
	Results considering each outcome

	References

